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Computer Science and Engineering

Access to healthcare resources is a worldwide issue, but people do not always need access

to such resources to discover a medical condition. Time and time again, people have been

able to discover medical symptoms in themselves and others using their human senses—

namely sight, touch, and hearing. However, observations with the senses are subjective,

which can lead an untrained person to ignore their own symptoms and neglect treatment

until their condition worsens. I propose that subjective health measures can be made

objective with little additional burden using smartphone sensors. For my thesis, I provide

three examples of how the smartphone camera can be used in place of visual inspection

to automatically interpret diagnostic observations related to the eye; these projects cover

medical conditions like glaucoma, pancreatic cancer, and traumatic brain injuries. My

work in this space has lead me to uncover a number of challenges that impede progress in

smartphone-based health-sensing. One of those challenges is ensuring that people make

rational decisions when they are given health-screening tools despite not having formal

training on diagnostic decision-making. I address this challenge by presenting a low-

fidelity survey instrument that enables researchers to rapidly explore the effects of design

decisions on the expected acceptability and effectiveness of a ubiquitous health-screening

technology.
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1

Chapter 1

INTRODUCTION

1.1 Problem Statement

Healthcare systems around the world are heavily strained. The World Health

Organization reported that there were 1.53 physicians for every 1000 people worldwide

as of the beginning of 2017 [263]. Although this statistic surpasses the organization’s

desired standard of 1 physician for every 1000 people, there are a number of caveats that

must be considered. First and foremost is the fact that the distribution of physicians is

not uniform. The global statistic is skewed in favor of developed nations. A deeper

examination reveals that 44% of the WHO’s member states fall below the WHO’s

standard [263]. Even within developed nations, physicians are far more likely to live in

urban areas, forcing those in more rural areas to travel to receive medical attention. Not

only are the numbers of physicians in favor of developed nations in urban areas, but also

the expertise of those physicians and the resources available to them. Experienced and

well-equipped physicians are more likely to live in urban, developed areas and are also

likely to be more proficient in diagnosing diseases and prescribing treatment. These

statistics also only consider physicians: medical professionals who are trained to make

diagnoses and prescribe medications to treat symptoms of various illnesses. When a

physician is in doubt, they will often refer their patient to a doctor who specializes in a

particular area of medicine, such as orthopedics or dermatology. The number of

specialized doctors worldwide is fewer than physicians, especially considering all of the

different specialties they may have. No matter the distribution of physicians or doctors
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in the world, it is impractical for people to visit clinics everyday to be tested for every

possible condition daily.

The lack of clinical resources begs for a balance between centralized in-clinic testing

and distributed testing in homes and communities. One way to support that balance

would be to encourage the development of less expensive medical devices. Although

Moore’s Law would leave one to believe that new hardware could be the answer, such a

vision is still impractical. People would need to purchase an automated blood pressure

cuff, a “smart stethoscope”, and tens of other devices; even if those devices are only $10

each, those costs may be prohibitive for people with lower incomes. Even if the devices

were inexpensive, people would need to train themselves on how to use each of the

devices, maintain the devices over time, and replace the devices once they have become

obsolete. This vision is also flawed because it takes time for companies to develop and

manufacture these tools, and problems related to health are serious enough that their

solution cannot be delayed by years.

I believe that a way to avoid these barriers is by taking advantage of a device that is

already ubiquitous throughout the world: the smartphone. Smartphone penetration

reached 66% in 2018, accounting for 73% of internet consumption [243]. Perhaps more

importantly, smartphones come with an array of sensors that can be used to understand

physiological and biological information. Cameras can process visual information,

microphones can process audio information, and even the accelerometer and gyroscope

can process information related to motion and proprioception.

In fact, these sensors mirror human senses—sight, hearing, and touch—that we

sometimes use to discover medical symptoms within ourselves or each other. We can see

when a wound is not healing properly, listen for wheezing, and feel when we are

shivering. The reasons for using sensors instead of our human senses include increased

robustness, consistency, precision, and accuracy.

The fever serves as an interesting example. Fevers are characterized by an internal

body temperature roughly greater than 37.5◦C (99.5◦F). If you ever had a fever as a kid,
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Figure 1.1: Smartphone sensors can process the same information that we can with sight,
hearing, and touch.

you probably remember your mother or father placing the back of their hand against your

forehead to feel your temperature. The body’s surface temperature is directly correlated

with its internal core temperature, but the surface temperature is usually cooler. Did your

parents account for this difference? Did they account for the fact that their own hand may

have been cold when they touched you? Most importantly, what did they have to feel in

order to decide that you had a fever? At best, measuring temperature through touch leads

to subjective descriptions like “warm” or “cold”. Even if your parents knew exactly what

they needed to feel, their judgment could have been clouded, for better or for worse. You

may have felt only slightly warm, but they were so worried that they decided you were

sick anyway. In the opposite situation, they may have been believed that you were faking

sickness to get out of class and convinced themselves to send you to school anyway, even

if you felt very warm.

Banco and Veltri conducted a study in 1984 [12] to test how accurate mothers were at

subjectively assessing the presence of a fever in their children. They found mothers were
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only correct 52.3% of the time when they said their children had a fever. Such studies

motivate the need for medical devices that are available to provide quantitative

measurements at home. In fact, devices already exist for measuring body temperature:

in-ear and oral home thermometers. However, not everyone has a thermometer at home

either because of cost or the mere inconvenience of purchasing one. Furthermore,

thermometers are only good for measuring temperature, limiting their efficacy to a

single task. Different symptoms warrant different tests, which in turn warrant different

medical devices.

Smartphone-based health-screening apps can serve two purposes. First, a smartphone

app can serve as an accessible screening tool that decides whether a particular measure of

a person’s health is normal or abnormal. Some may download such an app because they

know that their family has a history of a particular condition, while others may download

an app out of genuine curiosity. When the app determines that a person has an abnormal

result, the app can recommend that they seek a medical professional who can perform

a more direct clinical test (e.g., blood draw, MRI). Figuratively, the app could replace a

physician’s referral as the user’s admission ticket to see a specialized doctor.

The second purpose that a smartphone-based health-screening app can serve is

disease management. For example, a doctor might want to ensure that the beta blockers

they prescribed for a patient’s hypertension are working. To support or repudiate this

decision, the patient would ideally check their blood pressure on a daily or even hourly

basis. Getting such data would either require the patient to make frequent visits to the

clinic, which would be inconvenient, or to purchase their own in-home blood pressure

monitor, which constrains how often the patient can leave their home. A

smartphone-based solution would be a more convenient alternative to those two

options.
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1.2 Thesis Statement

Throughout this dissertation, I provide evidence to support the following thesis

statement:

Technological and scalability barriers to some medical assessments can be

addressed through smartphone-based sensing tools; moreover, the acceptability of

these tools can be addressed through surveys that reveal how these tools and their

results are likely to be regarded by potential users.

Clinical testing and expensive medical hardware introduce technological and

scalability barriers to at-home health screening. I will demonstrate how we can take

inspiration from subjective observations that people make with their senses and make

them more accurate, precise, repeatable, and pervasive using smartphone sensors. In

particular, my work focuses on the use of smartphone cameras for automating visual

observations related to the eyes. Based on my experience from these projects, I have

come to realize that we are far from seeing apps dedicated to specific symptoms in

today’s medical and technological infrastructure. I describe four specific challenges in

this regard and propose possible opportunities for future work. The last part of my

dissertation focuses on one of those challenges involving acceptability barriers that may

impede the adoption of smartphone-based health-screening technologies. I present a

survey instrument that helps researchers investigate the perceived utility and efficacy of

hypothetical technologies without requiring a physical prototype.

1.3 Outline of This Document

Chapter 2 provides an overview of relevant prior work. It begins with a discussion of

how researchers first began to use mobile devices for health applications in ways that did

not involve sensing. That overview is followed by examples of sensor-based health apps.

Since the projects I use to support my thesis relate to symptoms of the eye, I dedicate
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a separate section to that research space. The chapter concludes with an overview of

health-related decision-making support and people’s understanding of sensing systems.

The next three chapters detail smartphone-based health-screening apps that address

medical symptoms that manifest in the eyes. Chapter 3 describes iPressure, a

smartphone app and inexpensive hardware attachment for measuring intraocular

pressure. Eye pressure is an important risk factor for glaucoma, a progressive optic

neuropathy that can lead to blindness. Besides the large and complicated setups found

in ophthalmologist clinics, current methods for measuring eye pressure either require a

dedicated battery-powered device or expertise in reading narrow analog scales with

constantly fluctuating values. The iPressure system allows untrained, yet responsible

individuals to perform fixed-force applanation tonometry, a clinically validated

technique for measuring intraocular pressure. The main feature of the attachment is a

clear, free-hanging mass that the examiner places on top of the patient’s eye. When the

mass is allowed to rest on the eye, an area of the eye is flattened out. The mass is clear, so

the smartphone’s camera can see the applanated surface. By measuring the surface’s

area, the counterpressure exerted by the eye to support the mass can be calculated,

which in turn leads maps to a measurement of the pressure within the eye. To mitigate

errors associated with manual observation, the iPressure app uses image processing to

precisely measure the correct diameter of the applanation surface and aggregate those

diameters in a clinically relevant manner.

Chapter 4 describes BiliScreen, a smartphone app that quantifies the extend of

jaundice in an individual. Jaundice, or the yellow discoloration of the skin and eyes due

to the buildup of a compound called bilirubin in the blood, is one of the few externally

visible indicators of an issue in the pancreas. This is potentially critical for the diagnosis

of pancreatic cancer, which has one of the worst survival rates amongst all forms of

cancer because diagnoses are often made after the disease has already progressed. Ruiz

et al. [214] found that jaundice is only perceptible to the naked eye at levels beyond the

clinical threshold for concern, exposing a gap in coverage. BiliScreen aims to fill that gap
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by quantifying the extent of jaundice in a patient’s sclerae (i.e., the white part of the

eyes). Computer vision is applied to pictures of the patient’s eyes to isolate the sclerae

from the rest of the face. After the color of the sclerae is summarized, machine learning

is used to produce an estimate of the patient’s bilirubin level. The ambient lighting of the

room and the color response of the smartphone’s camera sensor both have an effect on

the appearance of the sclerae. I have investigated two approaches to mitigate these

effects. The first involves a low-fidelity box (similar to a head-mounted virtual reality

display) with the back-facing camera and flash facing towards the patient to provide

complete control over the lighting environment. The second uses paper glasses with

colored squares printed around the rims. Instead of standardizing the lighting

conditions for the photo, the glasses allow for the images to be calibrated against known

references.

Chapter 5 describes PupilScreen, a system that tests how a person’s pupils react to a

light stimulus. Measuring the pupillary light reflex is one of the clinical screening tests

used by athletic team doctors and EMTs to judge the extent of a person’s potential

traumatic head injury (TBI). The most ubiquitous test used by those groups is the

penlight test. In short, the penlight entails an examiner shining a miniature flashlight

towards a person’s eyes and describing how their pupils shrink in size (e.g., “quickly”,

“by a large amount”). Research has shown that the penlight test can lead to incorrect

decisions or disagreement between clinicians, motivating the need for a more

quantitative technique [165, 265]. To use PupilScreen, an examiner uses the box

described earlier for BiliScreen. The box blocks out the ambient lighting while allowing

the flash to stimulate the eyes, thereby standardizing the amount of light that reaches the

patient’s eyes. A fully-convolutional neural network architecture is used to measure the

pupils’ diameters within each frame to generate a graph of pupil dilation over time. That

graph can be summarized with clinically relevant measures like constriction amplitude

and velocity. After presenting results on PupilScreen, I describe some of the steps I have

taken to make PupilScreen more usable and eventually support a large-scale study.
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Chapter 6 describes four challenges I have identified in smartphone-based

health-screening: hardware limitations, smartphone heterogeneity, quality control

during data collection, and data interpretation for untrained users. These challenges

have emerged from experiences by myself and my colleagues in the mobile health space.

Beyond enumerating the challenges, I also describe current approaches that have been

used to address them and offer future solutions that can be explored in the future.

Chapter 7 delves into a potential aid for researchers to address investigate the last

challenge. I describe a survey instrument that allows researchers to rapidly explore the

effects that design decisions have on a ubiquitous health-screening technology’s

acceptability and effectiveness earlier in the design process, without the need for a

functional prototype The survey instrument is framed around the Health Belief

Model [102, 109], an established psychological model that attempts to explain and

predict short- and long-term health behaviors. The survey presents respondents with a

hypothetical scenario regarding their health and then introduces a hypothetical

health-screening technology that claims to screen for the medical condition in question.

The respondent is probed about constructs within the Health Belief Model and other

parameters that could explain their decision-making process. The results are analyzed

using structural equation modeling (SEM) to determine the significance of hypothesized

causal relationships. A deployment of the survey instrument revealed that in some

cases, people were willing to take change their course of action in response to a test

result regardless of the app’s reported accuracy.
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Chapter 2

RELATED WORK

My work draws inspiration from the vast literature regarding health-related

smartphone apps, wearables, and sensing as a whole. In this chapter, I will describe

related works from the mobile health and medical sensing communities. I will then cite

works that relate specifically to the diagnosis of medical conditions within and through

the eye since that is the focus my work has taken. I conclude this chapter by describing

how

2.1 Health-Related Apps without Sensing

Before researchers began to rigorously explore the full capabilities of sensors on

smartphones for health applications, people had already begun to take advantage of

mobile devices’ user interfaces and wireless capabilities for medical screening and

diagnosis. Many such works come from the Information and Communication

Technology for Development (ICTD) community, which focuses on how technology can

improve the lives of underserved populations in low-income regions.

The most common use of mobile devices in mobile helath applications has been for

one- or two-way communication between community health workers and affected

populations. One-way communication can entail a server that sends bulk SMS messages

to a large number of recipients. Kunutsor et al. [129] built such a system to limit missed

clinic visits. One-way communication can also entail users having to submit messages in

a pre-defined structure, such as the work of Asiimwe et al. [8] who used mobile devices

to communicate diagnostic test results. Two-way communication provides feedback

between community health workers and their patients. This feedback can be automated,
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such as the work by Ngabo et al. [179] that seeks to improve maternal and child health.

The feedback can also be manual. Lester et al. [138] propose a system called Weltel in

which community health workers and patients exchanged one-word messages about

HIV medication. Their system improved medication adherence, though almost 30% of

their participants had to be called since they did not provide a response to the SMS

message. Perrier et al. [194] provide an example that combines the strengths of both

automated and manual messaging. Communication was initiated with bulk messaging,

but nurses and health workers read free-form responses from those who needed

attention.

There have also been examples of mobile health applications that simply provide

information in a more convenient form factor. DeRenzi et al. [57], for example, designed

and deployed an electronic version of the Integrated Management of Childhood Illness

(IMCI). The IMCI is a protocol written by the World Health Organization to standardize

the methods by which clinicians assess children for various issues (e.g., malnutrition,

dehydration, malaria). To step through the procedures, clinicians are instructed to ask

the child’s parents questions and perform observational tasks like checking for sunken

eyes or pinching the child’s skin. The protocol is typically handed out as a printed

booklet1 that directs clinicians to different pages depending on the particular child’s

condition. The electronic IMCI by DeRenzi et al. automates the logical flow of

instructions, but not the sensing of the observational data that guides the flow. Mitchell

et al. [167] deployed a similar effort for standardizing the HIV screening methodology

used in South African AIDS treatment centers.

In a step towards sensing through mobile devices, researchers have leveraged location

information from call records (i.e., nearest cell tower) to track human mobility, which in

turn improves predictions on the spread of parasites. Wesolowski et al. [254], Vazquez-

Prokopec et al. [244], and others have are just some examples of how population-level

1http://www.who.int/maternal_child_adolescent/documents/IMCI_chartbooklet/
en/
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travel patterns can be combined with detailed geographical models of disease risk to do

such analysis.

2.2 Smartphone-Based Health Sensing Apps

Smartphones come with a number of sensors that can be used to process physiological

information in-the-wild. Below, I categorize projects in this space according to the sensor

they used.

2.2.1 Camera

My work has examined how computer vision and machine learning can be used to

objectify observations that are normally subjective using the smartphone camera.

Smartphone cameras have been used by a number of other researchers for diagnosis.

Wadhawan et al. [248], for example, use image processing and pattern recognition to

categorize skin lesions as malignant melanoma or benign moles. Their system is

intended to replace the “ABCDE rule” (asymmetric, irregular border, varied color, wide

diameter, and elevated) that dermatologists teach their patients to screen themselves for

skin cancer [175]. BiliCam, by de Greef et al. [91], uses the smartphone camera to screen

newborns for jaundice, a yellow discoloration of the skin. Neonatal clinic nurses see so

many babies that they can train themselves to identify cases of jaundice irrespective of

their skin tone. Once the baby leaves the clinic, though, that responsibility falls upon the

newborn’s parents, who likely does not have such a mental model to rely upon.

Face2Gene2, by Ferry et al. [67], is a smartphone application that diagnoses rare diseases

by analyzing deformities in facial structure. The original Face2Gene application was

deployed as a searchable image database that could be used as a reference for

observation, but the application was re-launched with deep learning and computer

vision analysis to automate the diagnosis procedure. Cho et al. [38] and Hashemi

2https://suite.face2gene.com/
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et al. [98] have both developed tools that screen children for autism. Cho et al. monitor

the child’s gaze pattern, noting that children with autism tend to have a more scattered

gaze trajectory. Hashemi et al. analyze children’s emotional reactions to video clips.

Grimaldi et al. [94] use a smartphone camera and flash in combination to perform

photoplethysmography, a technique that measures a person’s pulse. As blood rushes in

and out of the fingertip with the same frequency as the heart rate, the transparency of the

finger changes slightly, which can be picked up by the camera. Wang et al. [252, 253] take

photoplethysmography a step further with HemaApp, a smartphone app that estimate

the hemoglobin concentration against total blood volume by analyzing the color channels.

HemaApp uses machine learning to estimate the absorption coefficients of hemoglobin

and plasma at the smartphone flash’s broadband wavelengths.

Computer vision-based solutions are not only useful for diagnosing conditions on the

body, but also for reading disposable, biochemical immunoassay papers that change their

appearance according to the presence of a specific substance. Mondanyali et al. [174],

Dell et al. [56], and the company Mobalysis3 each propose their own smartphone-based

platform that quantifies the papers’ change in hue or brightness. Commercial pregnancy

tests are an example an immunoassay that is usually easy to read, but there are others that

are more difficult. For instance, interpretation of the CD4 rapid test for HIV treatment

depends on the intensity of the assay’s capture line [47]. Using computer vision removes

the need for qualitative guesswork from untrained users.

2.2.2 Microphone

Before smartphones truly became “smart”, all mobile phones were guaranteed to have

one sensor on them to process speech: the microphone. Thinking of smart devices as

portable voice recorders, researchers have devised algorithms to process speech for

various reasons. Mauremi et al. [173] use emotional acoustic features mined from phone

3https://mobalysis.com/rapid-diagnostic-testing/
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conversations to predict manic and depressive episodes of people suffering from bipolar

disorder. Dubey et al. [59], Bot et al. [24], and others also extract features from speech,

but do so tracking the progression of Parkinson’s disease. The speech of those affected

by Parkinson’s disease can be characterized by monotony in pitch, reduced loudness,

irregular speech rate, and imprecise consonants.

Microphones have been used to detect and describe sounds other than speech.

SpiroSmart [131] assesses a person’s lung function after they perform an explicit

breathing maneuver towards a smartphone, turning the microphone into an

uncalibrated flow sensor. Microphones measure sound, which is a pressure wave.

According to Bernoulli’s principle, the flow rate of a fluid like air is inversely related to

pressure; therefore, a microphone measures an increase in flow rate as a decrease in

pressure. To perform the test, a user holds their phone out at roughly arm’s-length,

inhales, and then exhales as if they were using a spirometer mouthpiece—mouth wide

open while forcing as much air as they can for as long as possible. Like a flute, a person’s

trachea becomes quieter when it is obstructed and higher pitched when it is restricted.

Work by Larson et al. [130] and Sun et al. [228] provide examples of systems that

classify sound-related respiratory symptoms like coughs and sneezes. When pressed

against the neck, a microphone can detect sounds from within the body. This is the

intuition behind BodyBeat [204], a wearable system designed to detect non-speech

sounds like chewing, laughter, and coughing. The microphone is not the only sensor that

can detect sound in this way. An accelerometer pressed against the neck can also pick up

the vibration of the vocal chords during speech. Mehta et al. [166] designed such a

system to diagnose voice disorders.

2.2.3 Accelerometers and Gyroscopes

Inertial measurement units (IMUs) allow smartphones to sense their own orientation to

deliver content on the screen in the best manner possible. However, motion sensors have
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been used for decades to understand the motion of limbs and bodies. Given the variety

of motions that people perform over the course of a day, most clinical motion tracking

relies on the detection of periodic motions or explicit gestures. Joundi et al. [111], Keijsers

et al. [122, 121], and Tsipouras et al. [242] are just a selection of researchers who have

analyzed time- and frequency-domain features to track the progression of tremors for

people with Parkinson’s disease, multiple sclerosis, and other conditions characterized by

essential tremor. Joundi et al. asked participants to strap their smartphones to their arms,

while the other projects asked participants to wear dedicated motion sensors on different

parts of their body (e.g., ankles, wrists, sternum). The mPower app, developed by Sage

Bionetworks [24], tests how quickly people with Parkinson’s can tap a touchscreen as a

longitudinal measure of their motor abilities.

2.3 Diagnosis within the Eyes

The eye is one of the most complex organs in the body, making it susceptible to a

number of different complications. Pamplona et al. have developed several inexpensive

attachments for smartphones to diagnose conditions related to the eye. Much like an eye

chart, their hardware presents stimuli to the user. Rather than conversing with a

clinician, the user interacts with their smartphone depending on what they see; this is an

iterative procedure that goes on until a result is reached. In NETRA [190], refractive

errors are identified by asking the user to align patterns projected through a microlens

display and pinhole. In CATRA [189], cataracts are localized by scanning the eye with a

beam of collimated light and asking the user for feedback about the spread of the beam.

EyeMITRA [134], being a wearable camera, varies slightly from the other two projects. It

is meant for mobile retinal imaging, so it does not perform diagnosis on its own. The

user is placed within the loop of the system by being asked to focus on focal points

shown in the other eye, which in turn focuses the camera on the opposite side.

Researchers have explored other ways of diagnosing ocular conditions. Abdolvahabi

et al. [1] discuss the possibility for digital photography to catch the early onset of
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retinoblastoma in newborns; they found that if the common “red-eye” effect in the

pupils is replaced with a milky white color (known as leukocoria), it could indicate

tumors in the back of the eye. D-Eye4 is a smartphone adapter for performing

fundoscopy. Bastawrous et al. [15] and Giardini et al. [85] propose a number of

attachments for diagnosing visual acuity and glaucoma. The first project I present in this

dissertation, iPressure, uses a passive hardware attachment to perform fixed-force

applanation tonometry, a technique for measuring intraocular pressure and assessing a

person’s risk for glaucoma.

The eye is part of the body’s nervous system, so it is susceptible to non-ocular

conditions that manifest within the body as well. Hyperemia and conjunctivitis are two

symptoms that appear in the sclera, affecting both the amount and contrast of the

surface-level blood vessels [99]. Osteogenesis imperfecta, a genetic disorder that results

in brittle bones, produces a blue tinge in the sclera [224]. Diabetes results in fewer

capillaries, dilated macrovessels, and changes in the curvature in the sclera’s

covering [186, 187]. My project, BiliScreen, automatically quantifies the extend of

jaundice in the sclera as a potential predictor for pancreatic cancer.

Ramlee and Ranji [205] propose a system that identifies arcus senilis, a condition that

manifests as a cloudy ring at the corneal limbus between the iris and the sclera. Arcus

senilis can be a sign of impaired lipid metabolism [14], which is a risk factor for

conditions like hypercholesterolemia, or decreased blood flow to the unaffected eye due

to carotid artery disease [226]. Ramlee and Ranji’s paper describes an algorithm that

involves iris segmentation and the identification of lipids in the eye, but they do not

provide an evaluation of their system. Limbus sign (i.e., dystrophic calcification) also

appears as a cloudy ring at the corneal limbus, but it indicates a buildup of calcium in

the blood [257]. Kayser–Fleischer rings are dark brown rings that develop at the corneal

limbus from copper deposition caused by Wilson’s disease [163].

4https://www.d-eyecare.com/
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Finally, the pupils are particularly useful for assessing neurological function since

their appearance is supposed to change due to stimuli like light and stress. PupilScreen

tracks the pupillary light reflex, or how a person’s pupils respond to changes in light.

Non-reactive pupils can indicate a traumatic brain injury or elevated intracranial

pressure [30]. The pupils’ shape and color can also be important to observe.

Oval-shaped pupils can indicate cerebrovascular illnesses like hypertensive cerebral

hemorrhaging [70] or neurosyphilis [71].

2.4 Supporting Health-Related Decision-Making for Non-Experts

To the best of my knowledge, there has not been prior commentary on evaluation

methods for health-related decision-making technologies, but there has been such

commentary in the related field of behavior change. Behavior change aims to change a

person’s habits to prevent disease, whereas decision-making support focuses on the

similar goal of getting a person to take a single health-promoting action (e.g., going to

the doctor, stopping drinking coffee). Klasnja et al. [123] provide a thorough

meta-analysis on different evaluation approaches for health behavior change, including

interviews, field studies, and randomized control trials. They come to the conclusion

that system evaluations should be tailored to their specific intervention strategies (e.g.,

self-monitoring, conditioning, tunneling [72]). Although Klasnja et al.’s commentary

concentrates on evaluation strategies for after a technology is ready to be deployed to

end-users, their call for additional evaluation strategies motivates my survey instrument

for early-stage technologies.

Hekler et al. [100] urge HCI researchers to utilize and contribute to behavioral science

theories. In particular, Hekler et al. call for the development of new strategies for

investigating design recommendations that balance abstraction with contextual

relevance. They note that many design guidelines for behavior change technologies are

often tied to assumptions about the specific technology that was studied, leading to

findings that are less generalizable than intended.
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One way to provide abstraction is through vignettes: brief, carefully written

situations that include a subset of key features to simulate a real-world scenario [3, 9].

My survey instrument uses hypothetical scenarios and technology descriptions to probe

people’s decision-making; however, I am not the first to do so. Evans et al. [65] and

Bachmann et al. [10] both provide systematic reviews on this field of research. Two of the

prominent vignette-based methods they describe are conjoint analysis [92] and judgment

analysis [95, 44]. In conjoint analysis, participants are asked to rank or select among

different versions of an object with slight variations across a feature set. As more of these

decisions are made, the influence of each feature on the participant choices can be

elicited. As an example of health-related conjoint analysis, Ryan [216] used conjoint

analysis to examine the values that are important to people pursuing in vitro

fertilization. In judgment analysis, participants are asked to decide whether they would

take action in a series of scenarios with different features. Participant decisions are

compared to the optimal decisions according to an oracle, producing correlations

between the weighting of the features in both cases. As an example of health-related

judgment analysis, Kee et al. [120] used the method for evaluating prioritization

decisions within a dialysis program.

My work diverges from existing vignette-based methods in several ways. First, my

survey instrument not only elicits preferences between different feature combinations,

but also examines how those features influence people’s health-related decision-making.

Second, I do not assume that an optimal decision exists for my hypothetical scenarios.

The fact that a person may change their course of action at all is an interesting result that

I believe should be studied further.

2.4.1 Evaluating the Perception of Sensor-Based Technologies

Prior work within UbiComp and HCI has looked at the role that transparency plays in

the perception of sensor-based systems. Dzindolet et al. [60] argue that decision-making
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systems capable of generating explanations for their behavior (i.e., intelligible systems)

yield increased trust and acceptance. Lim and Dey [144] investigated the issue further

through a survey instrument. By varying inference certainty and explanation

thoroughness, they found that intelligibility was helpful for applications with high

certainty yet harmful for applications with low certainty that still performed their tasks

successfully. Kay et al. [118] recognized that telling users the accuracy of a sensor-based

technology affects their perception of it. They deployed a survey instrument where

respondents were asked to decide if they would be willing to use hypothetical

technologies with various levels of precision and recall. In doing so, they created a tool

for measuring a technology’s acceptable level of accuracy. Kay et al.’s tool supported the

hypothesis that when a technology had a high cost for a false positive (e.g., a burglary

alarm that automatically calls the police), respondents prioritized precision over recall.

My survey instrument differs from the aforementioned studies in several ways. First,

prior work has primarily focused on technology acceptability. My survey instrument

goes a step further, investigating how a technology might affect a person’s course of

action (i.e., its effectiveness), which is an important outcome for ubiquitous

health-screening technologies. I am able to do so by restricting my instrument to

health-related decision making and by building my survey on top of the HBM. The HBM

allows a researcher to tease apart the effect that their technology intervention might have

on a person’s decision-making from other factors like a person’s educational background

or a person’s perception of a medical condition. Second, prior work has looked at the

roles intelligibility [144] and accuracy [118] play in the perception of a technology, but

our survey considers transparency more broadly. I allow researchers to reveal as much

or as little information as they want about their technology (e.g., interface, price, sensing

modality). Using structural equation modeling, researchers can evaluate how the

information they reveal affects the technology’s perceived acceptability and

effectiveness.
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Chapter 3

IPRESSURE

Intraocular pressure (IOP) is the innate fluid pressure within the eye. IOP is

maintained by the trabecular meshwork, which manages the leakage of the aqueous

humor in the anterior chamber of the eye. The typical IOP of humans ranges from 7-21

mmHg with a mean of approximately 16 mmHg. Elevated IOP is an important risk

factor for glaucoma, a progressive optic neuropathy that can lead to visual field defects

or eventual blindness. A study carried out by Quigley and Broman in 2006 [201] predicts

that the global population affected by glaucoma will reach 80 million by 2020; it further

postulates that half of the people living with glaucoma are unaware that they have the

disease, which can largely be attributed to a lack of resources or incentive for IOP

assessment. Glaucoma also imposes a significant burden on the US healthcare system,

costing roughly $3 billion USD and over 10 million visits to physicians per year [206].

Tonometry is the diagnostic procedure used for measuring IOP. Although tonometry

comes in many different forms, most require the experience of a trained eye care

professional and access to dedicated medical devices. These constraints make tonometry

difficult in low-resource environments. Smartphones, on the other hand, have seen a

rapid uptake all over the world and contain a myriad of sensors that can be used for

mobile health applications.

In this paper, I propose iPressure, a smartphone-based system that allows for

minimally trained individuals to perform IOP assessments on other individuals. Rather

than requiring precision from specialized hardware or a trained professional, the

precision of this system is placed within the smartphone. The user attaches a low-cost

smartphone adapter that I have developed to emulate a technique called fixed-force
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applanation tonometry. While the patient lies supine, the cylinder inside the instrument

is rested on the patient’s eye, allowing the smartphone’s camera to automatically detect

and measure the applanation surface, from which the patient’s IOP may be inferred.

I evaluated iPressure’s ability to measure IOP in a lab study with two ex vivo porcine

eyes. With such a controlled setup, I am able to vary the IOP within the same eye,

avoiding possible confounds attributed to physiology or diurnal variation; however,

applanation tonometry requires data from a clinically validated lookup table to convert

diameter measurements to IOP values, and such a table does not exist for porcine eyes. I

instead fit those measurements to the underlying physical model that governs the

process of applanation. I find that my results obey those models with Pearson

correlation coefficients of 0.89 and 0.88 for the two porcine eyes.

My contribution comes in three parts:

1. The design of the iPressure smartphone attachment for performing fixed-force

applanation tonomtry,

2. The use of computer vision to automatically detect and measure the applanation

surface, and

3. An evaluation of iPressure on two ex vivo porcine eyes.

3.1 Related Work

Before discussing how iPressure is able to convert a smartphone to an automated

tonometer, it is important to discuss the methods of tonometry that are currently

available and their underlying physical principles. I also mention prior work that has

been published on the considerations that must that must be taken into account with

tonometry.
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3.1.1 Forms of Tonometry

There are four broad classes of tonometry: applanation, indentation, dynamic contour,

and rebound. I detail each of those classes below:

Applanation Tonometry

The clinical gold standard for measuring IOP is Goldmann applanation tonometry [227].

Applanation tonometry in general relies on Goldmann’s observation that “the pressure

in a sphere filled with liquid and surrounded by an infinitely thin membrane is

measured by the counterpressure which just flattens the membrane” [87], also known as

the Imbert-Fick law. In Golmann applanation tonometry, a form of fixed-area tonometry,

a topical anesthetic with a fluorescein dye is placed on the eye. When the dye mixes with

the tears and the eye is fluoresced with a cobalt blue light, the dye appears as a brighter

yellowish green. A split optical prism is then pressed against the eye, resulting in two

semicircles. The ophthalmologist adjusts the force exerted by the prism until the

semicircles align on opposite ends, indicating that the area of the applanation surface has

reached a predetermined quantity. That force measurement is mapped to an IOP value

using a clinically validated lookup table [196]. The complement to fixed-area tonometry

is fixed-force tonometry. Instead of measuring the force required to make an applanation

surface of known area, a cylinder of known mass is allowed to rest on the eye without

any external forces and the area of the applanation surface is mapped to an IOP value.

An example of a fixed-force tonometer is the Maklakov tonometer, which entails

applying ink on the eye and the mass that applanates the eye to measure the area of ink

that was transferred between the two [150]. The system I propose in this work also uses

fixed-force tonometry.
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Indentation Tonometry

The underlying physical principle behind indentation tonometry is similar to that of

indentation tonometry: a fluid-filled object will indent to a greater degree when the

internal pressure is low. The most well-known indentation tonometer is the Schiøtz

tonometer, first developed in 1905 [218]. Most Schiøtz tonometers are analog in nature,

moving a needle across a narrow scale that must be precisely read by the user.

The most common portable tonometer is the TonoPen [191], a handheld,

battery-operated device that uses a combination of applanation and indentation

tonometry. To help the user operate the TonoPen, the device produces an audible click

after contact with the cornea. The TonoPen has a built-in microprocessor that processes

readings and accounts for variability, removing the possibility of misinterpretation.

Dynamic Contour Tonometry

Dynamic contour tonometry, first demonstrated by Kanngiesser et al. [114], uses a flexible

material that can conform to the curvature of the cornea. When the device match’s the

curvature, a piezo-resistive pressure sensor can accurately measure the IOP. By taking a

continuous pressure measurement against the eye, the ocular blood flow corresponding

to the heart pulse can be estimated; this is evidence that this can also be a predictor of

irregular IOP [106, 63]. An example of a dynamic contour tonometer is the PASCAL, a

slit-lamp mounted device similar to the Goldmann applanation tonometer [101].

Rebound Tonometry

Rebound tonometers measure how far a tiny probe bounces as it dropped onto the cornea.

The iCARE tonometer [49] uses a magnetic field to hold the probe in place and then drive

it towards the eye in a controlled manner. Once the probe bounces off the cornea, the

magnetic field measures the deceleration, which is lower at high IOPs. Unlike most of the

aforementioned tonometers that require the application of a topical anesthetic, rebound
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tonometers can be used as is.

3.1.2 Studies on Tonometry

A number of clinical studies have been conducted to both compare different forms of

tonometry and identify factors that can affect IOP measurements. Posner and

Inglima [198] compared the measurements from fixed-force applanation tonometry

(Maklakov tonometer), fixed-area applanation tonometry (Goldmann applanation

tonometer), and indentation tonometry (Schiøtz tonometer). Strong correlations were

found between all three techniques, but Posner and Inglima found that the fixed-force

applanation and indentation tonometry techniques overestimate low IOP measurements

and underestimate high IOP measurements when compared to Goldmann applanation

tonometry. Posner has also published an article that provides a more qualitative

comparison between those three techniques [197], including the fact that Goldmann

applanation tonometry is not portable and is more difficult to ues with children.

Perhaps the most famous study in regards to confounding factors of tonometry is the

Rotterdam Study [259]. Wolfs et al. measured the IOP and central corneal thickness of

395 subjects in Rotterdam, Netherlands. With a linear regression, they found an increase

of 0.19 mmHg for each 10 micrometer increase in the thickness of the cornea from the

average thickness of 537 micrometers. Mansouri et al. [152] and others found that IOP

has a natural diurnal fluctuation of 3-6 mmHg. Qureshi et al. [202] noted a correlation

between days of the menstrual cycle and variations in intraocular pressure, although the

variations alone were not significant enough to affect diagnoses. Regarding controllable

effects on IOP, Pardianto [192] found that alcohol and marijuana can lower IOP, while

caffeine can increase IOP. Schmidtmann et al. [219] even found that the playing of

musical instruments with high intraoral resistance (particularly woodwind and brass

instruments) can lead to drastic increases in IOP.
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3.2 Data Collection

Figure 3.1: The proposed system emulates fixed-force applanation tonometry using the
hardware adapter pictured above. The clear acrylic cylinder is allowed to move freely
within the black casing so that its mass provides a constant force on the patient’s eye.

The hardware adapter is shown in Figure 3.1 attached to an iPhone case. The most

important part of the hardware is the clear acrylic cylinder inside the black casing. The

acrylic cylinder is allowed to move freely within the casing, but has notches to ensure

that it does not fall out of the adapter. The acrylic cylinder has a diameter of 8 mm and a

height of 63 mm. The 8 mm diameter was chosen such that it would capture a fairly large

circle from a low eye pressure without being too difficult to use on patients with small

palpebral fissures. The height of 63 mm was chosen for two reasons: (1) If the applanation

surface is placed too closely to the smartphone’s camera, the resulting video becomes

difficult to focus and the edges become blurry. (2) This combination of diameter, height,

and material leads to a mass of 5.0 g, a mass for which the conversion from applanation

surface diameter to IOP has already been clinically validated for human eyes [196, 262].

Although conversion tables for larger masses have been produced, studies have shown
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that the weight of the tonometer induces an increased pressure due to the displacement

of aqueous humor during applanation [262].

The black casing itself is designed such that the acrylic cylinder is optimally positioned

in front of the smartphone’s back-facing camera. Not only does this positioning include

the alignment of the acrylic cylinder with the camera, but also the distance between the

base of the acrylic cylinder and the camera. The black casing also blocks out ambient

lighting to prevent any extraneous reflections from appearing in the acrylic cylinder.

To enhance the visibility of the acrylic cylinder in the camera, the edge of the cylinder’s

bottom surface is frosted. To emphasize the applanation surface in the camera, an external

LED is mounted on the casing; in the future, the smartphone’s flash could be redirected

to the outside of the acrylic cylinder via a short fiber optic cable. When this lighting is

reflected off of fluorescein dye, it shines as a bright yellowish green.

Before receiving the assessment, the patient assumes a supine position. The user

conducting the test administers a topical anesthetic with fluorescein dye (Fluorescein

sodium 0.25%/Proparacaine 0.5%) to the patient’s eye. The user then holds the

smartphone over the patient’s eye such that only the weight of the acrylic cylinder is

applied to it. This means that the smartphone should be as flat as possible (i.e.,parallel to

the ground) and the user should not apply any extra force on the smartphone

(i.e.,pressing down). The flatness of the smartphone is measured with the smartphone’s

accelerometer, operating as a sort of bubble level.

The weight of the acrylic cylinder creates an elliptical applanation surface with a

yellowish green outline when the LED is shone on the patient’s eye. The smartphone’s

camera records the applanation of the eye. The frames from the resulting video are then

processed using computer vision to give a real-time estimate of the patient’s IOP.

3.3 Algorithm

Figure 3.2 outlines the algorithm used to extract an IOP measurement from an RGB

image. The overall goal of the algorithm is to detect two ellipses: the base of the clear
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Figure 3.2: The steps taken to estimate intraocular pressure from an RGB image of the
applanation procedure. After converting the image into the HSV space, masks are defined
for the clear acrylic cylinder’s base (outer ellipse) and the applanation surface (inner
ellipse) using color and intensity features as filters. Ellipses are detected on the insides of
those masks and then mapped to absolute measurements given the 8 mm diameter of the
acrylic cylinder. The diameter of the applanation surface is then mapped to the patient’s
estimated IOP.

acrylic cylinder (outer ellipse) and the applanation surface (inner ellipse). Since the

diameter of the acrylic cylinder is known, the applanation surface can be assigned an

absolute measurement by using the cylinder as a reference. Both of the ellipses should be

relatively circular; however, the acrylic cylinder may appear slightly elliptical if the

hardware adapter is improperly mounted, and the applanation surface may be elliptical

if the patient has significant astigmatism or corneal surface irregularities.

As shown on the far left of Figure 3.2, the edge of the acrylic cylinder appears bright

and white, and the edge of the applanation surface appears as a dimmer yellowish

green. By filtering the image according to intensity and color information, binary masks

can be produced to select the outlines of the circles. This information is most intuitively

recovered from the image after it is converted into the HSV space. The mask for the

inner ellipse bounds the hue between 15-45%, the saturation between 35-100%, and the

value 15-100%. Together, these thresholds encode the greenish yellow that appears due
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to the fluorescein. The mask for the outer ellipse is simpler, thresholding the saturation

between 0-20% and the value between 25-100%. Both masks are smoothed using

morphological filtering operations to create contiguous contours.

Figure 3.3: A variation of the Starburst technique by Li et al. [141] is used to estimate
the innermost ellipse from a binary mask. After candidate points are selected from the
inside, contiguous subsets of points are tested with least-squares ellipse fitting until the
most circular is found.

Each of the masks will have some non-uniform thickness due to the application of the

dye and extraneous reflections in the cylinder. The diameters of interest correspond to the

innermost edges of these masks. Standard circle detection methods would either discover

many overlapping circles or none at all, depending on the evenness of the masks. Even

worse, only part of the applanation surface may be visible if it overlaps with the sclera,

which makes it more difficult to see the fluorescein dye. For these reasons, I apply an

adaptation of the pupil contour detection algorithm (Figure 3.3) used by Li et al. in their

Starburst work [141].

The ellipse detection starts by assuming the center of the ellipses given that the

position of the clear acrylic in the camera’s view is known. The algorithm then steps

radially at 20 evenly spaced angles until an edge is reached in the mask (illustrated with
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fewer angles for clarity). This assumes that there are no contours that appear within the

mask, which can happen for the applanation surface if the fluorescein pools in the

patient’s eye. Since extra blobs appear in the middle of the mask due to the distribution

of the fluorescein, the radial steps start from a fixed distance just below the minimum

expected radius to prevent them from stopping short.

Most of the detected edge points should belong to the desired ellipse, but some may

still belong to artifacts along the edge of the contour. The original Starburst algorithm

accounts for noisy ellipse points by fitting random subsets of points to ellipses and

selecting the ellipse that minimizes the number of outliers. In the case of applanation,

there is almost always a clean arc that appears in the image. Instead of randomized

subsets of points, as used by Li et al., the proposed system fits contiguous subsets of

points (three-quarters of the entire circumference) to ellipses. Although I noted earlier

that the base of the acrylic cylinder and the applanation surface may appear elliptical,

the ellipses should be relatively rounded. If the percent difference between an ellipse’s

major and minor axes is greater than 10%, it is automatically rejected. Amongst the rest

of the ellipses produced by the different subsets of edge points, the ellipse that best fits

the data according to Euclidean distance is selected.

The ellipses recovered from the two masks are then translated into circles with a radius

equal to the average of the ellipses’ axes. Given that the diameter of the clear acrylic

cylinder is 8 mm, the absolute measurement of the applanation surface can be recovered

by using the cylinder as a reference. Every time the user performs an applanation, a time

series of diameter measurements is produced. The measurements of interest occur when

the data is most stable since that is when the weight of the acrylic cylinder should be

resting on the eye; therefore, the system combines diameter measurements by taking a

mean over the measurements within a standard deviation of 0.25 mm over the course

of 0.5 s. The final diameter measurement is mapped to an IOP value using a clinically

validated lookup table, such as the one published by Adolph Posner [196].
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3.4 Results

3.4.1 Data Collection

Given the invasive nature of contact applanation tonometry, a feasibility evaluation has

been performed on two freshly enucleated ex vivo porcine eyes before deploying the

system to living human patients. Although there is not a clinically validated table that

maps applanation surface diameter to IOP for animal eyes, the Imbert-Fick law still

applies. The porcine eyes were inserted into a clay mold such that the iris was horizontal

to the ground, as if a patient were supine. The anterior chambers of the eyes were

cannulated and the IOP was artificially varied by the height of a saline-filled reservoir. A

topical anesthetic with a fluorescein dye (Fluorescein sodium 0.25%/Proparacaine 0.5%)

was applied to the eyes to assist in imaging the applanation surface. Tonometry

measurements were obtained three times at every 5 mmHg between 15 and 40 mmHg,

leading to a total of 32 measurements. Below 15 mmHg, the applanation surface’s edge

begins to overlap with the edge of the acrylic cylinder, making it difficult to separate the

two. The upper bound exceeds the limits of diagnostic significance for elevated IOP.

3.4.2 Comparison to the Imbert-Fick Law

Although other methods of tonometry are available as a point of comparison for

validation, they all have two drawbacks for my validation: (1) they require manual

inspection (e.g., Schiøtz or Maklakov tonometers) and/or (2) they are calibrated

specifically for in vivo human eyes (e.g., Goldman applanation tonometers). Instead of a

comparison to a possibly inaccurate ground truth, I validate my findings against what is

expected from the Imbert-Fick law:

P =
F

A
=

mg
1
4
πd2

(3.1)

where P is the intraocular pressure, m is the mass applied to the eye, g is the
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acceleration due to gravity, and d is the diameter of the applanation surface. Although

corrections have been proposed by ophthalmologists to account for properties like the

coefficient of ocular rigidity and corneal curvature (e.g., [262]), these models break down

for ex vivo eyes. The measurements from each of the eyes were independently fit to the

Imbert-Fick law using non-linear fitting. The mass parameter was used as the unknown

parameter; if the data were to follow the Imbert-Fick law without deviation, the

parameter resulting in the best fit would be 5 g, the mass of the acrylic cylinder.

Figure 3.4: The data recorded from the smartphone system and fit to the physical model
expected from the Imbert-Fick law. The two curves lead to coefficients of determination
of 0.89 and 0.88.

Figure 3.4 shows the models that were fit to the two datasets. The clinical

measurements validated by Adolph Posner [196] are also included as a point of

reference. Even though Posner only dealt with human eyes, the shape of the data should
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be similar to that of the ex vivo porcine eyes. When compared to the Imbert-Fick law,

Posner’s data shares a coefficient of determination (R2) of 0.95 and the estimated mass

according to the optimal fit is 5.01 g, showing that it follows the model very closely. The

fit for the first porcine eye leads to a coefficient of determination of 0.89 and an estimated

mass of 5.04 g. The fit for the second eye does not obey the Imbert-Fick law as well; it

results in a lower coefficient of determination of 0.88 and an estimated mass of 5.94 g.

The regressions overestimate low pressures and underestimates high pressures in all

cases, a fact that has been observed by clinicians for other forms of tonometry as well

[198]. The most promising observation is that there is a statistically significant separation

between the diameters for 20 mmHg and 30 mmHg, the boundary that clinicians

consider for the diagnosis of elevated IOP.
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Chapter 4

BILISCREEN

Among all forms of cancer, pancreatic cancer has one of the worst survival rates [5].

Many attribute this statistic to the fact that the symptoms associated with pancreatic

cancer often go unnoticed until the cancer is in a later stage; 80-85% of patients present

themselves with tumors so advanced that they cannot be removed completely through

surgery [23, 246]. One of the earliest symptoms to appear is jaundice, a yellow

discoloration of the skin and eyes. In the case of pancreatic cancer, jaundice occurs

because a cancerous growth obstructs the common bile duct, causing a buildup of

bilirubin in the blood [55]. Being able to detect the very first signs of jaundice when

levels of bilirubin are minimally elevated could enable an entirely new screening

program for at-risk individuals. Jaundice also manifests as a symptom for a variety of

other conditions, such as hepatitis and Gilbert’s syndrome, but I am primarily motivated

by the link between jaundice and pancreatic cancer for the purpose of this paper.

The clinical gold standard for measuring bilirubin is through a blood draw called a

total serum bilirubin (TSB). TSBs are invasive, require access to a healthcare professional,

and are inconvenient if done routinely for screening. Medical device manufacturers have

investigated non-contact alternatives to a TSB for bilirubin. One such device is the

transcutaneous bilirubinometer (TcB). A TcB shines a wavelength of light that is

specifically reflected by bilirubin onto the skin and measures the intensity that is

reflected back to the device. The computations underlying TcBs are designed for

newborns; their results simply do not translate correctly for adults. Part of the reason for

this is that normal concentrations of bilirubin are much lower in adults compared to

newborns (<1.3 mg/dl vs. <15.0 mg/dl [20]). As it so happens, the sclerae are more
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sensitive than the skin to changes in bilirubin because their elastin has a high affinity for

bilirubin [148]. This presents an opportunity for early, non-invasive screening that has

been previously unexplored. My contribution to this space is BiliScreen, a system that

estimates the extent of jaundice in a person’s eyes through pictures taken from the

smartphone and produces an estimate of their bilirubin level.

To be effective, BiliScreen should be sensitive enough to measure the range of

bilirubin levels exhibited by adults. Ruiz et al. [214] found that jaundice is not apparent

to the trained naked eye until roughly 3.0 mg/dl; however, bilirubin levels greater than

1.3 mg/dl warrant clinical concern. There exists a detection gap between 1.3 and

3.0 mg/dl that is missed by clinicians unless a TSB is requested, which is rarely done

without due cause. I hypothesize that diagnoses can be made much earlier and lead to

better outcomes with a system that is precise enough to distinguish between bilirubin

levels within and outside of those bounds.

Oftentimes, the trend of a person’s bilirubin level over time is far more informative

than just a single point measurement. If a person’s bilirubin exceeds normal levels for one

measurement but then returns to normal levels, it could be attributed to normal variation.

If, however, a person’s bilirubin shows an upward trend after it exceeds normal levels, it

is more likely that a pathologic issue is worsening their condition, such as a cancerous

obstruction around the common bile duct. Trends are not only important for diagnosis,

but also for determining the effectiveness of treatment. One course of action for those

affected by pancreatic cancer is the insertion of a stent in the common bile duct. The stent

opens the duct so that compounds like bilirubin can be broken down again; a person’s

bilirubin level should decrease thereafter. If their bilirubin continues to rise, then there

are either issues with the stent or the treatment is ineffective. Trends in bilirubin levels are

difficult to capture because repeated blood draws can be uncomfortable and inconvenient

for many people, especially those in an outpatient setting. BiliScreen takes advantage of

the ubiquity of smartphones, dramatically reducing the effort required to perform these

measurements.
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Figure 4.1: BiliScreen is a system that measures a person’s bilirubin level using the
smartphone’s camera. I examine two methods for color normalization: (top-left) a box
similar to a head-mounted VR display that controls the amount of light that reaches the
eyes, and (bottom-left) paper glasses that provide colored squares for calibration.

BiliScreen uses the smartphone’s built-in camera to collect pictures of a person’s eyes.

The sclera, or white part of the eyes, are extracted from the image using computer vision.

Features describing the color of the sclera are then produced and analyzed by a

regression model to return a bilirubin estimate. Since different lighting conditions can

change the colors of the same scene, I evaluate two accessories that account for the

ambient lighting conditions. The first accessory is a head-worn box (Figure 4.1, top-left),

similar to a head-mounted VR display, that simultaneously blocks out ambient lighting

and provides controlled internal lighting through the camera’s flash. The second

accessory is a pair of paper glasses printed with colored squares that facilitate calibration

(Figure 4.1, bottom-left). The latter accessory is reminiscent of a previous project called

BiliCam [91] by some of the co-authors of this work, which uses a color-calibration card
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to account for ambient lighting conditions in pictures of newborns that are processed to

detect neonatal jaundice. Beyond their intent of assessing bilirubin levels by detecting

jaundice through the smartphone camera, the two projects are quite different. BiliCam is

intended for newborns, who exhibit a far wider range of normal bilirubin levels than

adults. Because the sclera does not have a predefined shape, BiliScreen also requires an

additional step of segmentation. Although BiliScreen has tighter precision requirements,

it benefits from the fact that the typical sclera is race-agnostic; the same cannot be said

for skin, which varies across different ethnicities.

I evaluated BiliScreen in a 70-person preliminary study including individuals with

normal, borderline, and elevated bilirubin levels. I found that BiliScreen with the box

accessory, which leads to better results than the glasses, estimates an individual’s

bilirubin level with a Pearson correlation coefficient of 0.89 and a mean error of -0.09 ±

2.76 mg/dl when compared to a TSB. BiliScreen with the glasses accessory leads to a

Pearson correlation coefficient of 0.78 and a mean error of 0.15 ± 3.55 mg/dl.

My contribution comes in four parts:

1. An implementation of the BiliScreen system for convenient bilirubin testing with

two different methods for color calibration,

2. A novel sclera segmentation algorithm that is robust for individuals with jaundice,

3. Models that relate the color of the sclera to a measure of bilirubin in the blood, and

4. An evaluation of BiliScreen on 70 participants.

4.1 Related Work

The BiliScreen algorithm has two fundamental components: automatic segmentation of

the sclera and models that map sclera color to bilirubin level. I summarize the literature

related to both components below.
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4.1.1 Sclera Imaging

To my knowledge, BiliScreen is the first application that automatically segments the

sclera for medical purposes. There is, however, a body of literature that has proposed

various methods of segmenting the sclera for biometric verification and gaze estimation.

For biometrics, individuals are recognized through the uniqueness of the blood vessel

patterns in their sclera. For gaze estimation, researchers have relied on the fact that the

exposed area of sclera changes as a person makes significant changes in gaze.

The most common method for sclera segmentation relies strictly on color

information, noting that the sclera is normally white. Zhou et al. [267] use dynamic

thresholds in the RGB and HSV color spaces to create binary masks that correspond to

non-skin- and sclera-colored pixels, respectively. After taking the intersection of those

masks, the iris and pupil are removed by using a visible glint within the iris as a seed for

an iterative method that moves radially until it reaches the iris-sclera border. Marcon

et al. [153] train a linear discriminant analysis classifier on pixel color values to

distinguish between sclera and non-sclera pixels. Morphological operations and

watershed flooding are applied to form fuller candidate regions for the sclera, after

which a classifier trained on shape information is used to select the regions that most

resemble the sclera. Das et al. [50] propose a method that involves fuzzy k-means

clustering on the pixel color and location to form three clusters: the skin, iris, and sclera.

These strictly color-based methods rely on the assumption that the sclera is bright and

white, which is not the case for people with jaundice. As the sclera becomes more

yellow, its color can be confused with the color of lighter skin tones, making it difficult to

train a global classifier. Even if the person’s skin tone is known beforehand, there is the

chance that its color is too similar to the person’s sclera for it to be removed without

spatial information.

In a different paper, Das et al. [51] demonstrate a method of sclera segmentation that

uses active contour-based segmentation. In active contour-based segmentation, a snake
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(i.e.,deformable spline) is initialized roughly around an object of interest. An energy

function is defined based on the presence of lines, edges, and corners in the image, and

the position of the snake is iteratively adjusted until that energy function is minimized.

For sclera segmentation, Das et al. initialize snakes to the left and right of the

automatically detected pupil. This technique is suitable for BiliScreen in that does not

depend on the color of the sclera, but the initialization of the snakes can be difficult

when the geometry of the eye is not completely constrained. The location of the sclera

relative to the pupil depends on both the geometry of the eye and the user’s gaze

direction. For instance, depending on the narrowness of the eye and how far the user

looks up, the sclera may or may not appear directly under the iris. If the initial snakes

are too far out from the sclera, they may stop short at glare spots or wrinkles near the

eyelids as they constrict. More onus could be placed on the person whose picture is

being taken to adjust themselves until their pose satisfies specific constraints, but such a

procedure could lead to frustration. Instead of relying on the location of the pupil, eye

detection algorithms [142, 247] could be used to standardize a region of interest around

the eye; however, such techniques fail when nearby facial features are obstructed, as is

the case with the BiliScreen accessories.

One more approach that has been explored for sclera segmentation is the use of

dedicated hardware. Crihalmeanu and Ross [46] utilize near-infrared (NIR) lighting to

make sclera segmentation straightforward. They observe that the skin has higher NIR

reflectance than the sclera since the skin has less water, which makes the separation

between the sclera from pale skin more apparent in NIR than in RGB. The use of

dedicated hardware in BiliScreen beyond my box or glasses accessory is undesirable for

cost and accessibility purposes.

Overall, these issues motivate the need for a more automated solution. The sclera

segmentation approach I propose for BiliScreen uses two iterations of the GrabCut

method [212]. The first iteration learns the color characteristics of the skin and removes

the skin to isolate the eye. The second iteration isolates the sclerae by assuming that they
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are the brightest regions within the eyes (not necessarily white).

4.1.2 Jaundice Assessment

The standard for measuring bilirubin in the blood is through a blood draw called a total

serum bilirubin (TSB). The more convenient alternative used in neonatal clinics is a

transcutaneous bilirubinometer (TcB). Beyond these two methods, there are several

researchers who have investigated bilirubin measurement via the digital photography of

areas susceptible to jaundice: the skin and eyes.

Leartveravat [136] proposes a completely manual system for assessing jaundice in a

newborn’s skin. Photographs of the skin with a color calibration card are captured using

a digital camera. Once the photo is uploaded to image editing software (e.g.,Adobe

Photoshop), the image is color-calibrated and converted to the CYMK color space. A

technician then manually selects a pixel representative of the newborn’s skin, subtracts

its yellow component from its magenta component, and inputs that value into a linear

regression to get a bilirubin estimate. The BiliCam system by de Greef et al. [91] also

analyzes pictures of a newborn’s skin with a color calibration card to estimate their

bilirubin level. It differs from the work of Leartveravat in that BiliCam entails more

complicated models that account for skin tone.

Leung et al. [139] compare the performance that a system could achieve by analyzing

both the skin and the sclera for newborns. Similar to de Greef et al. and Leartveravat, the

authors manually selected regions corresponding to the skin, sclera, and a color

calibration card for their analyses. With a fairly modest linear regression model, the

authors achieve far better Pearson and Spearman correlations using the sclera (0.75 and

0.72) than using the skin (0.56 and 0.54).

To the best of my knowledge, BiliScreen is the first non-invasive system to quantify an

adult’s bilirubin level. BiliScreen analyzes the sclera because, as Leung et al. confirmed,

the sclera is more sensitive to changes in bilirubin than the skin. This is important because
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higher precision is needed for adults. Bilirubin levels in healthy newborns may peak as

high as 15.0 mg/dl [20], whereas bilirubin levels for healthy adults are normally less than

1.3 mg/dl. BiliScreen is also completely automated, from the segmentation of the glasses

and sclera to the feature extraction and machine learning. Finally, BiliScreen benefits from

the fact that healthy sclera colors are independent of ethnicity, so less training data should

be needed in the long-term.

4.2 Data Collection

I collected images using the BiliScreen app with both the box and glasses accessories to

train BiliScreen’s models and evaluate their efficacy. Volunteers with normal bilirubin

levels were recruited from the University of Washington. Volunteers with varying

bilirubin levels (ranging from normal to elevated) were recruited from the University of

Washington Medical Center. Below, I elaborate on the diversity of the participant pool. I

then describe my data collection procedure, including the design of the BiliScreen

accessories and my procedure for ground truth measurements. All facets of my study

were approved by the University of Washington’s Institutional Review Board.

4.2.1 Enrollment

Table 4.1: Participant demographics (N = 70)

BILIRUBIN CLASSIFICATIONS - N (mean ± std)

Normal (<1.3 mg/dl) 31 (0.6 ± 0.2 mg/dl)

Borderline (1.3-3.0 mg/dl) 14 (2.1 ± 0.5 mg/dl)

Elevated (>3.0 mg/dl) 25 (9.7 ± 5.9 mg/dl)

My study included 70 volunteers. From the university, 18 were male and 13 were

female. From the medical center, 13 were male and 26 were female. Table 4.1 shows the
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distribution of the total serum bilirubin tests split across the two different populations.

Note that the precision of the TSB is 0.1 mg/dl.

Thresholds classifying the concern warranted by a single bilirubin measurement can

vary between clinics. For the purposes of BiliScreen, three classes are defined: normal

(<1.3 mg/dl), borderline (1.3-3.0 mg/dl), and elevated (>3.0 mg/dl). The 1.3 mg/dl

threshold is used by the University of Washington Medical Center as their upper limit

for a normal TSB measurement, while the 3.0 mg/dl threshold is based on the findings of

Ruiz et al. [214] concerning when jaundice is most apparent to clinicians. According to

these thresholds, 31 participants had a normal bilirubin level, 14 had a borderline

bilirubin level, and 25 had an elevated bilirubin level. Unsurprisingly, most of the

university population had a normal bilirubin level. The lack of variation within that

population was expected. Although the clinical upper threshold for normal bilirubin

levels is 1.3 mg/dl, values near 0.6 mg/dl are the norm. The medical center population

provided a much wider spread of bilirubin levels, ranging from normal to elevated.

4.2.2 Data Collection Procedure

The data collection procedure for the BiliScreen app was the same for both populations,

but the methods of recruitment and collection of ground truth measurements were

different. The participants from the university were volunteers recruited from emails on

public mailing lists. After a research staff member collected data with the BiliScreen app

(described in the next section), they were asked to undergo a TSB within 24 hours.

Bilirubin can change over long periods of time but remains stable within a day barring

any serious conditions.

The participants from the medical center were inpatients suffering from liver disease.

A research staff member selected candidate participants on two criteria. The first criterion

was a recorded TSB blood test within 24 hours. Again, this is to ensure that the patient’s

recorded bilirubin level matches closely with their level at the time of data collection. The
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second criterion relies on the Model for End-stage Liver Disease (MELD) [256], a scoring

system for assessing the severity of chronic liver disease. The MELD score is a summary

metric that combines three measures of a patient’s liver condition - TSB, serum creatinine,

and the international normalized ratio for prothrombin time (INR) - with a higher score

indicating a higher three-month mortality rate. There is no guarantee that a patient with

a high MELD score has an elevated bilirubin level since TSB is only one component of

the MELD score; however, a high MELD usually includes an elevated TSB. The original

recruitment criteria was a minimum MELD score of 14. This threshold was later lowered

to 6 in order to recruit more patients with borderline levels (1.3-3.0 mg/dl) of bilirubin. If

a patient satisfied the two recruitment criteria, they were approached by a research staff

member and told about the study. Patients were enrolled in the study if and only if they

understood the study and gave consent.

4.2.3 BiliScreen Accessories

Physics-based models for color information typically consider an object’s visible color to

be the combination of two components: a body reflection component, which describes the

object’s color, and a surface reflection component, which describes the incident illuminant

[126]. When using digital photography, color information that gets stored in image files

is also impacted by the camera sensor’s response to different wavelengths. For my study,

I examine the efficacy of two different accessories to isolate the sclera’s body reflection

component in different ways (Figure 4.2).

The first accessory is a 3D-printed box reminiscent of a Google Cardboard headset1.

There is no electrical connection between the phone and the box; the phone is simply slid

into the box via a rectangular channel along the back. The channel at the back of the box

also fixes the placement of the phone relative to the participant’s face by centering the

phone’s camera and keeping it at a fixed distance. The box blocks out ambient lighting

1https://vr.google.com/cardboard/
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Figure 4.2: (top) A 3D rendering of the BiliScreen box. The smartphone’s flash lies in
the horizontal center of the box. The flash is covered with a neutral density filter and
a diffuser to make the light more comfortable. (bottom) A rendering of the BiliScreen
glasses.

while allowing the phone’s flash to provide the only illumination onto the eyes. From

pilot studies, some participants found the flash to be overwhelmingly bright. A neutral

density filter and a diffuser were placed in front of the flash using a filter holder to soften

the light slightly. The box used in my study was 3D-printed, but it could be made with

an even cheaper material like cardboard (provided that it is sturdy enough to support the

weight of the phone). By using the flash as the only illumination source on the sclera,

the surface reflection component is kept constant for all images. This leaves the body
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reflection component and the camera sensor’s response as the only two components that

affect the sclera’s appearance. For the sake of this study, all images were captured using

the same device, holding the camera sensor’s response constant and leaving the body

reflection component as the only variable left.

The second accessory (Figure 4.2, bottom) is a custom pair of paper glasses,

reminiscent of the 3D glasses found at movie theaters. The glasses have no lenses inside

their frames. Along the rims of the glasses are various colored regions. The corners near

the temples and the nose have smaller black squares surrounded by the glasses’ white

background. These squares act as fiducials, similar to those seen in QR codes. The rest of

the regions along the rims are the following colors (in no particular order): cyan,

magenta, yellow, 17% gray, 33% gray, 50% gray, 67% gray, 83% gray, and black. The use

of the colored squares is inspired by color calibration target cards like the Macbeth

ColorChecker [193]. Rather than keeping the surface reflection component and the

camera sensor’s response constant, the colored squares allow for all images to be

normalized to the same references. The colors along the rims of the glasses are known a

priori. This means that their body reflection component is known and any deviation

between their appearance and their true color is due to the surface reflection component

and the camera sensor’s response. Section 4.3.3 explains the calibration procedure that is

used to define a calibration matrix that best simulates the effects of the latter two color

information components, which can later be applied to the sclerae themselves to reveal

their true body reflection components.

From a usability perspective, the glasses are more convenient for the user and

cheaper to manufacture. However, the colors along the rims of the glasses must always

be consistent, both across time and different pairs. If the colors were to fade over time,

the colors would become a changing reference that could lead to inaccurate results.

Although the box is bulkier, its requirements are far looser. The box’s main purpose is to

block out ambient lighting; control over the precise placement of the smartphone is

convenient for aspects of the automatic segmentation, but the box’s dimensions do not
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require as strict precision as the glasses’ colors.

From a technical perspective, the color calibration procedure for the glasses can incur

its own inaccuracies. In BiliScreen’s current state, though, the algorithm for the box

accessory does not account for the camera sensor’s response. If users were to use a

phone with a camera different from that of the iPhone SE, no guarantee can be made that

colors will appear the same between the two. Even though the color calibration

procedure for the glasses may introduce noise, it allows for any device to be used

without issue. The calibration procedure captures the effects of both the surface

reflection component and the camera sensor’s response.

4.2.4 BiliScreen Application

All data was collected by a research staff member through a custom app on an iPhone

SE. The images collected by the app were at a resolution of 1920×1080. The research staff

member ensured that participants complied with the procedure and noted any difficulties

that participants had with the app and its accessories.

The BiliScreen app developed for my study was designed to collect data for both

accessories in a similar manner. Before the use of either accessory, the smartphone’s flash

was turned on. When using the box, the flash is necessary since it is the only way to

make the eyes visible within it. Keeping the flash constantly on rather than bursting it at

the time of the pictures was a consideration for participant comfort since the stark

change in lighting can be unpleasant. When using the glasses, the flash was left on in

case there was insufficient lighting in the room or the glasses created a shadow on the

participant’s face.

After the flash was turned on, the research staff member placed the smartphone in the

BiliScreen box. A hole in the back of the box provided access to the screen for starting

and stopping data collection. The app prompted the participant to look in four different

directions—up, left, right, and straight ahead—one at a time while taking a picture after
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each. Having the participant look in different directions exposed different parts of the

sclera, some of which may have exhibited more jaundice than others. The participant was

not asked to look downward since doing so covers their eyes with their eyelids. Once the

pictures were taken inside the box, the research staff member removed the smartphone

and held it approximately 0.5 m away from the participant’s face to take pictures with

the glasses. This distance is roughly how far away I would expect participants to hold

their smartphones if they were taking a selfie. The participant looked at each direction for

two trials per accessory, yielding 2 BiliScreen accessories × 2 trials per accessory × 4 gaze

directions per trial = 16 images per participant.

4.3 Algorithm

Figure 4.3: The algorithm pipeline for both BiliScreen accessories. Images from both the
box and the glasses go through the same sclera segmentation, feature extraction, and
machine learning steps (with their own respective models and small parameter changes).
Images gathered with the glasses must go through the extra steps of glasses segmentation
and color calibration.

Figure 4.3 outlines the high-level algorithm pipeline that transforms a BiliScreen image

to a bilirubin estimate. I will provide further detail in this section on each of these steps,

starting with the segmentation of various regions of interest, the transformation of those

regions into feature vectors, and finally the machine learning itself.
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4.3.1 Sclera Segmentation

Figure 4.4: The procedure for sclera segmentation. The first iteration of GrabCut is
initialized with several translated rectangles in parallel. The one that leaves a region
that most resembles the eye is used as the region of interest for the second iteration of
GrabCut. The second iteration of GrabCut uses adaptive thresholds to select the brightest
regions within the eye.

The first step to segmenting the sclera from BiliScreen images is to define regions of

interest where the sclera should be located. One way to logically identify these regions

would be to use Haar feature-based cascade classifiers [142, 247] that are used in many

applications that require eye detection. However, off-the-shelf eye detectors sometimes

failed because features around the eyes (e.g., eyebrows) were obstructed by the

BiliScreen box and glasses. To maintain consistency across images, regions of interest are

defined through other methods depending on the BiliScreen accessory in use. Within the

BiliScreen box, the regions of interest are defined as rectangular bounding boxes located

on the left and right half side of the box using predetermined pixel offsets within the
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image. This is possible because the placement of the camera within the box is always the

same. The offsets were defined such that the regions of interest would cover various face

placements and inter-pupillary distances. For the BiliScreen glasses, the regions of

interest are more precisely defined as the regions surrounded by the colored squares

(refer to Section 4.3.2 for how those squares are identified).

My approach to sclera segmentation relies on an algorithm called GrabCut [212], a

technique for separating a foreground object from its background; in the case of

BiliScreen, the sclera is the foreground, and everything else (e.g., skin, iris, pupil, hair) is

the background; the terms “foreground” and “background” do not necessarily refer to

the perceivable foreground and background of the image, but rather a region of interest

versus everything else in the image. GrabCut treats the pixels of an image as nodes in a

graph. The nodes are connected by edges that are weighted according to the pixels’

spatial and chromatic similarity. Nodes in the graph are assigned one of four labels:

definitely foreground, definitely background, possibly foreground, and possibly

background. After initialization, graph cuts [25, 93] are applied to re-assign node labels

such that the energy of the graph is minimized. Normally, GrabCut is an interactive

technique that is typically initialized with a bounding rectangle and then followed with

user-drawn strokes that further clarify the object of interest. BiliScreen uses GrabCut

with a similar procedure, but without human intervention.

Before segmentation, bilateral filtering is applied to smooth local noise while

maintaining strong edges. For the first iteration of segmentation, the eye is extracted

using GrabCut with rectangles for initialization (Figure 4.4, left). This not only limits the

search space for the sclera, but also removes most of the skin around the eye, reducing

any effects those pixels could have on color histograms or adaptive thresholds later in

the algorithm. The location of the eyes within the image can vary, so rectangular

initializations at different locations are tested. To determine which output is most likely

to only contain the eye, the segmented regions from each initialization are described

using the calculations listed in Table 4.2. As the second column indicates, some of the
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metrics are meant to be minimized, while others are meant to be maximized. Those that

are meant to be minimized are negated so that higher values always imply that the

region is more eye-like. The metrics are combined using the Mahalanobis distance

relative to all of the other segmented regions. Overall, this calculation results in high

distances for segmented regions that are small, elliptical, flat, and diverse in color, as

well as rectangular initializations that likely do not crop out the eye. The segmented

region with the highest distance wins out and is passed along to the second part of the

sclera segmentation algorithm.

Table 4.2: Metrics used to rate a result of GrabCut as an eye

Name Min/Max Description

Area fraction Min The fraction of the region’s area over the

total area of the region of interest

Ellipse area fraction Max The fraction of the region’s area over the

area of the ellipse that best fits the region

Incline Min The incline of the ellipse that best fits the

region

Color variation Max The standard deviation of the color across

the region

Variation over borders Min The standard deviation of the brightness

values across the top and bottom borders

of the rectangle used to initialize GrabCut

After the first iteration of GrabCut is applied, the pixels that are assigned to the

foreground are considered to be part of the eye, regardless of whether they are labeled as

“definitely foreground” or “possibly foreground”. A second iteration of GrabCut is then

used to extract the sclera from the eye (Figure 4.4, right). The second iteration of

GrabCut normally requires user interaction. In BiliScreen, however, the GrabCut
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initialization can be bootstrapped automatically using adaptive and pre-defined

thresholds. After converting the image to the HSL color space, the four possible pixel

assignments are initialized as follows:

• Definitely foreground: Top 90th-percentile of L channel values

• Definitely background: Bottom 50th-percentile of L channel values

• Possibly foreground: Otsu threshold [185] on L channel values

• Possibly background: Inverse Otsu threhsold on L channel values

In cases when a pixel satisfies multiple assignments, the strongest assertion is

prioritized (i.e., definitely foreground over possibly foreground). These assignments are

based on the assumption that the brightest region in the eye should be the sclera. This

assumption fails when glare appears within the eye, which is always the case with the

BiliScreen box and sometimes the case with the BiliScreen glasses. Glare corresponds to

high values in the lightness channel of the HSL image (L > 230). Pixels with glare are

replaced using inpainting, a reconstruction process that re-evaluates those pixels’ values

via the interpolation of nearby pixels. Once GrabCut is run for the second time, the

pixels that belong to the “definitely foreground” and “possibly foreground” labels are

selected. The resulting mask is then cleaned by a morphological close operation to

remove any tiny regions.

The distance between the smartphone and the person’s face changes depending on

which BiliScreen accessory is in use while the picture is being taken. The smartphone is

at a fixed distance of 13.5 cm from the person’s face when the BiliScreen box is in use and

at a variable, farther distance when the BiliScreen glasses are in use. Changes in distance

can have a modest effect on the lighting because the flash imparts more light on the eye

when it is closer to the face. However, this effect is constant with the BiliScreen box and

is canceled out by the color calibration procedure for the BiliScreen glasses. The distance
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does, however, have a greater effect on the parameters for segmentation. As the distance

between the smartphone and the person’s face increases, the effective size of the eye in

the image shrinks. The size of the rectangle used to initialize the first iteration of GrabCut

has fixed dimensions for the BiliScreen box (∼600 × 200 px) and dynamic dimensions

according to the size of the frames for the BiliScreen glasses (∼90% of width × 60% of

height).

4.3.2 Glasses Segmentation

Figure 4.5: An example of correct segmentation for the glasses. The region over the bridge
of the nose is used as a white reference for both sides.

The goal of the glasses segmentation is to identify the borders of the colored squares

around the rims of the glasses and the white portion at the bridge of the nose so that

their colors can be used for calibration. An example of correct segmentation is provided

in Figure 4.5. The process starts with identifying the fiducials at the corners of the

glasses. The fiducials are designed to be square-shaped, but unless they are viewed

straight on, they can appear more as quadrilaterals. Black quadrilaterals are found by

converting the image to grayscale and filtering it so that only the contours with four

corners and a brightness value less than 60 are kept. The small quadrilaterals correspond
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Figure 4.6: Illustrations showing how the positions of known fiducials or colored squares
can be used to (left) interpolate or (right) extrapolate the positions of missing ones.

to the fiducials, while the others correspond to the outlines of the colored squares

around the rims. The fiducials are roughly one-fourth the size of the colored squares.

Therefore, quadrilaterals that are less than half of the average quadrilateral area are

classified as fiducials; the other quadrilaterals are classified as colored squares. To

confirm that the fiducials belong to the glasses and not something in the background, the

algorithm checks that the pixels immediately outside of their borders are white. If any

fiducials are not found because of glare or some other error, their locations are

interpolated or extrapolated based on the locations of the discovered fiducials and the

known geometry of the glasses. The left side of Figure 4.6 shows an example of

interpolation. When there are known fiducials that are along the same vertical and

horizontal axes as where the missing fiducial should be, the corners of the missing

fiducial can be estimated by using the intersections of those lines. The right side of

Figure 4.6 shows an example of extrapolation. If there are not enough known fiducials to

use interpolation, BiliScren relies on the known relative dimensions of the glasses to

estimate where they would most likely lie.

The positions of the fiducials are then used to check the positions of the colored

squares. The fiducials are connected with straight lines to provide guides on which the

other squares should lie. Any quadrilaterals found outside of those bounds are
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discarded as the background. The fiducials are then used to develop a one-to-one

mapping between the names of the colored squares (e.g., left yellow, right 33% gray) and

their locations in the image. In the end, there should be two colored squares along each

side of the lenses and black patches at the far bottom corners. The locations of the larger

black-bordered quadrilaterals are compared to the expected positions of the colored

squares. If the distance between a detected quadrilateral and the expected position of a

colored square is less than a quarter of the expected square’s width, the quadrilateral is

matched with the corresponding label. There may not be enough detected

black-bordered quadrilaterals to assign a border to every square label. This can be

attributed to, among other reasons, glare from the camera or ambient lighting that

obscures black outlines. Like the missing fiducials, the missing colored squares can be

found using a combination of interpolation and extrapolation. After the squares around

the rims of the glasses are found, the white rectangle that rests on top of the bridge of the

nose is selected using a specified offset from the rims to provide a white color reference.

Both interpolation and extrapolation in this algorithm assume that the squares are

linearly arranged around the glasses. The glasses were designed to make interpolation

and extrapolation straightforward, but there were cases when users had to bend them so

that they would fit comfortably on their faces. In these cases, it can be difficult to find

fiducials and colored squares when quadrilateral detection has already failed. That being

said, the advantage of the BiliScreen glasses design is that there are squares with the same

color on each side. It is preferable to detect the squares on the same side as the eye of

interest since they better represent the lighting shone on that particular side, but if one of

those squares cannot be found, the other side can be used as a contingency.

4.3.3 Glasses Color Calibration

By identifying the colored squares of the glasses, BiliScreen images can be normalized to

a common reference. Doing so removes the effects of the ambient lighting and the camera
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sensor’s response, both of which can change the appearance of the sclera.

The calibration procedure involves identifying the calibration matrix C that best

maps the colors of the glasses’ squares observed in the image to their actual colors. More

formally, define O as the matrix of observed colors and T as the matrix of target colors,

where each row contains an RGB vector that corresponds to a colored square. The matrix

C defines the linear transform such that:


TR1 TG1 TB1

TR2 TG2 TB2

...
...

...

TRk TGk TBk

 =


OR1 OG1 OB1

OR2 OG2 OB2

...
...

...

ORk OGk OBk



C11 C12 C13

C21 C22 C23

C31 C32 C33

 (4.1)

Because image files are gamma-encoded to optimize the usage of bits, gamma

correction must be applied to the observed colors from the image so that linear

operations on them are also linear. This is done by raising the values in O by a constant

(γ = 2.2 for standard RGB image files). After a calibration matrix is applied, the gamma

correction can be reversed by raising the values of the matrix to 1/γ.

The calibration matrix C is calculated using an iterative least-squares approach

detailed by Wolf [258]. The calibration matrix is first initialized under the assumption

that the individual color channels are uncorrelated and only require a gain adjustment

that would scale the mean value of the observed channel values to their targets:

C =


mean(TRi)/mean(ORi) 0 0

0 mean(TGi)/mean(OGi) 0

0 0 mean(TBi)/mean(OBi)

 (4.2)

For each iteration, the current calibration matrix is applied to the observed colors to

produce calibrated colors. The colors represented by the rows are converted to the

CIELAB color space so that they can be compared to the targets in T using the

CIEDE2000 color error [221], the current standard for quantifying color difference. A
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new calibration matrix C is computed that reduces the sum of squared errors, and the

process repeats until convergence.

For BiliScreen, the rows of the target color matrix T are defined as the expected RGB

color vectors of the glasses’ squares according to their specification. The rows of the

observed color matrix O are computed by finding the median vector in the HSL color

space of the pixels within the bounds of the squares found in Section 4.3.2 (excluding the

fiducials) and converting the vector back to RGB. For a region R with N 3-dimensional

colors, the median vector is defined as:

vm = argmin
vi∈R

N∑
j=1

‖vi − vj‖2 (4.3)

The median vector is preferred over taking the mean or median across the channels

independently because it guarantees that the result is a color that exists within the original

image; by treating the channels independently, the combination of values in the three

channels may not ever appear in the image. The difference between the two approaches is

typically insignificant when the region is uniform (as is the case with the colored squares),

but is a precaution taken nonetheless.

The calibration procedure is repeated for both eyes using the colored squares closest

to them. This is done because the ambient lighting effects are not always uniform; there

may be a shadow or beam of light that creates a gradient across the face, making one side

look slightly different from the other. There can also be cases when a colored square is

washed out by glare from the smartphone’s flash. If the error between the colored square

and the expected color is 5 units more than the error between the corresponding colored

square on the opposite side and the expected color (color difference is unitless), the latter

is used. I never encountered a case when squares of the same color on opposite sides of

the face were simultaneously obstructed. If that were the case, however, that color could

simply be thrown out of the calibration procedure.
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4.3.4 Feature Extraction

Jaundice is characterized by yellow discoloration, so the features extracted from

BiliScreen’s images should summarize the color of pixels belonging to the sclera. The

color of the sclera is described using the median vector over the pixels that belong to the

sclera for the same reasons described at the end of Section 4.3.3. More often than not, the

sclera contains other components like vessels or a gradient from the eye’s curvature. In

these cases, aggregating the color channels independently can lead to a color that is not

present in the sclera. For example, if an otherwise pristine sclera contains many blood

vessels, taking the mean of the color channels independently will represent the color of

the sclera as a pinkish color; the median vector will represent it as white assuming there

is more white area than there is red. The median vector is also useful for when sclera

segmentation includes superfluous pixels outside of the sclera. Assuming most pixels

belong to the sclera, those pixels do not factor in to the final sclera color.

Table 4.3: Variations for feature extraction

PIXEL SELECTION METHODS

All pixels All pixels

No glare L ≤ 220 in HSL space

No glare or vessels L ≤ 220 and H ≥ 15 in HSL space

No glare or eyelashes 5 ≤ L ≤ 220 in HSL space

No glare, vessels, or eyelashes 5 ≤ L ≤ 220 and H ≥ 15 in HSL space

COLOR SPACES

RGB, HSL, HSV, L*a*b*, YCrCb

There are two considerations that must be considered for feature extraction

(Table 4.3). The first is which pixels are considered in the calculation. The most obvious

answer is to use all the pixels that survived the sclera segmentation presented in
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Section 4.3.1. As mentioned earlier, though, not all pixels within the boundaries of the

sclera actually represent the color of the sclera. Blood vessels and eyelashes can add

undesired complications to the data. The median vector is meant to alleviate their

effects, but as an extra precaution, BiliScreen uses the 5 different pixel selection methods

described in Table 4.3. The thresholds for the different methods were selected

empirically by examining images with prominent cases of glare, vessels, and eyelashes.

They are by no means intended to capture all cases of non-sclera pixels; in fact, they are

kept conservative on purpose to ensure that enough pixels remain in the calculation.

The second consideration for feature extraction is which color space is used. Images

are saved from the smartphone camera in the RGB color space. Converting the image to

a different color space is simply a calculation across the three channels that expresses

those numbers in a different way, something that various machine learning models and

feature transformation techniques can learn on their own. Nevertheless, explicitly

carrying out color conversions can rearrange the color data in such a way that fewer

features are needed. BiliScreen computes features for the 5 different color spaces listed in

Table 4.3. Beyond features from the various color spaces, BiliScreen also computes the

pairwise-ratios of the three channels in RGB. The intuition behind these features is that a

yellower color will have low blue-to-red and blue-to-green ratios.

BiliScreen computes color representations of the sclera using every combination of

pixel selection method and color space. Each color has 3 channels, resulting in 5 pixel

selection methods × (5 color spaces × 3 channels per color space + 6 RGB ratios) = 105

features per eye. Not all of the features are used in the final model. Some pixel selection

methods across the same regions can result in the same pixels, and some channels across

color spaces represent the same information in similar manners. Automatic feature

selection is used to select the most explanatory features and eliminate redundant ones.

The top 5% of the features that explain the data according to the mutual information

scoring function are used in the final models. Mutual information measures the

dependency between two random variables [127]. The features that best explain the data
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come from looking at the ratio between the green and blue channels in the RGB color

space. A healthy sclera should be white, which produces high values across all three

color channels. Blue is the opposite of yellow, so as the blue value of a white color is

reduced, it becomes more yellow. This means that a high green-to-blue ratio implies a

more jaundiced sclera.

4.3.5 Machine Learning

Separate models were developed for the two BiliScreen accessories to determine which

would yield the better accuracy. The models use random forest regression and are

trained through 10-fold cross-validation across participants. Note from Table 4.1 that the

distribution of bilirubin levels is not evenly distributed; the healthy participants

recruited from the university generally had similarly low values within 0.1 mg/dl, while

the patients from the medical center had a far wider spread. The thresholds used in

BiliScreen split the participants such that the normal and elevated classes have roughly

equal sizes (31 vs. 25). The borderline class is roughly half as large (14), which is to be

expected given that it is hard to catch such cases. To ensure that the training sets are

balanced during cross-validation, splits are assigned using stratified sampling across the

three bilirubin level classes. To be more specific, the typical fold includes 3 participants

with normal bilirubin levels, 1 participant with a borderline bilirubin level, and 3

participants with elevated bilirubin levels.

The data collection procedure resulted in 2 trials per accessory × 4 gaze directions per

trial = 8 images per accessory. Note that each image contains 2 eyes, leading to 16 eye

images per accessory. Each eye is summarized with a feature vector that leads to its own

bilirubin level prediction. For the results that are presented in this paper, the estimates

from the 8 images are averaged to produce a final bilirubin level estimate that is reported

back to the user. In the future, I plan to examine methods for selecting the best subset of

images and only using them in the calculations.
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4.4 Results

My evaluation examines BiliScreen’s two major components: the segmentation

algorithms and the sclera color-to-bilirubin level regression. I first examine the

performance of the glasses’ and sclera segmentation. I then show how accurate

BiliScreen can be, assuming near-perfect segmentation of the glasses and sclera, as well as

how accurate BiliScreen is with the current segmentation algorithms. I conclude by

framing the accuracy of BiliScreen as a classification problem, showing how likely

BiliScreen is to make the correct diagnostic decision.

4.4.1 Segmentation

All of the images were hand-annotated by the same researcher for ground truth. For the

images taken with the BiliScreen box, the sclerae for both eyes were annotated; for the

images taken with the BiliScreen glasses, the sclerae of both eyes, the colored squares,

and the lenses were annotated. The performance of BiliScreen’s segmentation algorithms

can be described using precision and recall. The ground truth pixels annotated by the

researcher are treated as targets. Precision defines the fraction of selected pixels that

were correct, while recall defines the fraction of correct pixels that were selected. A low

precision with a high recall would imply that the algorithm selects most of the pixels

that belong to the target, but also includes several pixels outside of the target. A high

precision with a low recall would imply that the algorithm only selects a fraction of the

necessary pixels, but they are mostly within the target.

Glasses Segmentation

Finding the general region of interest for the sclera when the box is in use is trivial; it is

based on rough rectangles on either side of the box. For the BiliScreen glasses, however,

the region of interest is defined by the region within the glasses’ lenses. I found that the

glasses segmentation algorithm was able to locate the region of interest for the sclera with
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a mean precision of 94.0 ± 15.0% and a mean recall of 94.4 ± 15.1% across all images

relative to the lens borders defined by the human annotator. Recall is more important

than precision for this problem because, as a region of interest, it is okay for superfluous

pixels to be included as long as those belonging to the lens are included. The first step of

the sclera segmentation algorithm attempts to rule out pixels outside of the eye agnostic

of whether they represent skin or something else.

The glasses segmentation algorithm is also important for locating the colored squares

around the lenses for color calibration. On average, the algorithm found the squares with

a mean precision of 83.5 ± 24.2% and a mean recall of 88.2 ± 24.1% across all images.

Unlike the sclera region of interest, precision is more important than recall for the colored

squares because superfluous pixels can add noise to the calculation that summarizes the

pixel colors to a single color value. Nevertheless, that is the specific reason for why the

median vector is used over other aggregation functions. BiliScreen can tolerate mediocre

precision as long as most of the pixels belong to the colored squares, which is true even

within a standard deviation of my results. BiliScreen also takes advantage of the fact that

there is a copy of each colored square on both sides of the face. The expected colors of the

squares are known beforehand, so if a square on one side appears significantly different

from the other with respect to the expected color, BiliScreen prioritizes the one that is

closer to expectations.

Many of the issues that arose for the glasses segmentation can be attributed to their

deformability. The glasses were made from a thin cardstock that could bend if the glasses

were not large enough to fit on the participant’s head. If BiliScreen cannot find a square,

the algorithm fits the squares it has found to linear rows and columns and uses their

intersection to find the missing one. When the rows and columns are actually curves,

lines do not properly infer the squares’ locations. Higher-order polynomials could have

been used to model the curvature, but most of the squares required extrapolation rather

than interpolation. That is to say, the locations of the squares had to be inferred outside

of the range of the available squares, so even higher-order functions would not always
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properly locate squares. In the future, I plan on improving the design of the BiliScreen

glasses with a stiffer material and adjustable stems to avoid bending in the future.

Sclera Segmentation

As was the case for the glasses, ground truth for the sclera segmentation came from

manual annotations. Pixel perfect labels are impossible by hand because of artifacts like

eyelashes and blood vessels that encroach into the region. Nevertheless, those artifacts

are handled post-hoc during feature extraction, so neither the ground truth annotations

nor the segmentation algorithm are required to handle them.

Table 4.4: Sclera segmentation results per eye

Precision Recall

Box 74.8 ± 34.1% 56.9 ± 28.6%

Glasses 74.8 ± 35.0% 43.1 ± 27.1%

For sclera segmentation, a high precision with a low recall is also preferred over a

low precision and a high recall. During the feature extraction phase, the colors of the

individual pixels are summarized into single color vectors that describe the entire region.

Having a small but correct region is likely to result in a similar calculation outcome, but

including pixels outside of the target region can contribute noise to the result. Table 4.4

shows the per-eye precision and recall for both BiliScreen accessories. The spread of these

measures can be misleading since the performance of the algorithm is roughly binary; the

segmentation algorithm either identifies a region that corresponds to the sclera and only

the sclera, or it completely misses and identifies another region, though it is correct more

often than it is not. Looking deeper into the results, I find that 57.1% of the images from

the box were segmented with ≥90% precision and 56.5% of the images with the glasses

were segmented with ≥90% precision. Failures were not evenly distributed amongst all
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Figure 4.7: Example cases of BiliScreen’s segmentation working (left) correctly and (right)
incorrectly while the BiliScreen box was in use. These images come from individuals who
were not recruited for the study in order to protect the privacy of those participants.

users.

Figure 4.7 shows successful and unsuccessful cases of sclera segmentation. For the

most part, failures can be attributed to mistakes in the first half of the sclera

segmentation algorithm, which uses GrabCut on the region of interest to locate the eye.

In the first example of poor segmentation (third column of Figure 4.7), a faint shadow is

cast onto the top-right part of the sclera since its curves away from the smartphone’s

flash. The sclera is assumed to be the brightest part of the image. Therefore, the

algorithm prefers the rectangular initialization that includes the lower half of the sclera,

which is bright, and the region just below the eye, where the flash reflects off of the skin

and back to the camera. In the second example of poor segmentation (fourth column of

Figure 4.7), the sclera has a naturally darker tint. Again, the flash produces a reflection
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under the eye, so the algorithm completely fails to select any part of it. The dataset

includes some users who squinted or blinked during the study. No attempts were made

to manually curate images, and there was usually still enough exposed sclera so that a

human observer could barely pick out the correct region. Nevertheless, I plan on

implementing quality checks in a future version of the BiliScreen app to handle such

cases. For the sclera segmentation with the glasses, errors can also be attributed to

incorrect regions of interest from the segmentation of the glasses themselves. If

BiliScreen could not the properly locate the glasses, then the algorithm makes its best

guess, which can hinder later parts of the pipeline. This is another quality check that I

believe will be necessary in the next version of the BiliScreen app.

4.4.2 BiliScreen as a Measurement Tool

Figure 4.8 shows the BiliScreen’s optimal performance for estimating a person’s bilirubin

level when the exact boundaries of the sclera are known a priori. Of course, this claim

assumes that the color-calibration procedure for the glasses and the feature extraction for

both accessories properly capture the information needed to properly describe the color

of the sclera. Although there are likely aspects of improvement in these regards, I

suspect that automatic segmentation is the largest contributor of error since all

calculations thereafter are dependent on its results.

The results are presented in two different arrangements. On the left, Figure 4.8 shows

the correlation of BiliScreen’s predictions with the ground truth measurements gathered

from TSBs. The points are shown on a log-scale for clarity since the distribution is biased

towards lower values. The dotted lines on the correlation plots indicate the 1.3 mg/dl

and 3.0 mg/dl thresholds that separate the three groups of measurements. With the

optimal segmentation, the Pearson correlation coefficient between BiliScreen’s

predictions and ground truth are 0.86 with the box and 0.83 with the glasses. On the

right, Figure 4.8 shows the Bland-Altman plots of the same measurements. Again, the
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Figure 4.8: The (left) correlation and (right) Bland-Altman plots for BiliScreen’s bilirubin
measurements with the (top) box and (bottom) glasses using the optimal sclera and
glasses segmentation. Note that the axes of the correlation plot are both in log-scale,
as is the x-axis of the Bland-Altman plot.
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x-axis shows the ground truth measurements using a log-scale for clarity. With the box,

BiliScreen estimates the user’s bilirubin level with a mean error of -0.17 ± 2.81 mg/dl.

With the glasses, BiliScreen estimates the user’s bilirubin level with a mean error of -0.08

± 3.10 mg/dl.

The optimal models in their current state are more accurate for lower levels

(<1.3 mg/dl) than they are for higher levels (>3.0 mg/dl). This can be attributed to the

underlying distribution of bilirubin measurements for my participants’. Two

participants returned a TSB value greater than 20 mg/dl, far beyond the threshold

between borderline and elevated values. Since these participants were not thoroughly

represented in my dataset, the optimal models underestimates their bilirubin level to fall

more in line with the rest of the distribution. In general, higher TSB values lead to larger

prediction errors for this very reason. Comparing the box and glasses accessories, the

box yields better results. The box eliminates the effects of ambient lighting on the

appearance of the sclera. The glasses require the extra step of color calibration, which

introduces its own errors into the pipeline.

The results shown in Figure 4.9 are presented in the same manner as those in

Figure 4.8, but were calculated using BiliScreen’s automatic segmentation algorithms for

the sclera and glasses. I anticipated that BiliScreen’s overall performance would degrade

with the use of imperfect segmentation. Regarding the sclera segmentation, extra pixels

almost always belonged to the skin surrounding the eye. Skin often appears more yellow

than the typical white of the sclera, so significant patches of skin can improperly lead to

overestimation. The median color vector is used during feature extraction to counteract

such behavior, but it is not sufficient for cases when the majority of the extracted region

belongs to the skin. The prediction results using BiliScreen’s automatic segmentation

algorithms confirm my hypothesis, particularly for the glasses. The Pearson correlation

coefficient for pictures taken with the glasses drops to 0.78, and the mean error of that

model widens to 0.15 ± 3.55 mg/dl. To my surprise, the Pearson correlation coefficient

for the box rises to 0.89, and the mean error improves to -0.09 ± 2.76 mg/dl. A careful
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Figure 4.9: The (left) correlation and (right) Bland-Altman plots for BiliScreen’s bilirubin
measurements with the (top) box and (bottom) glasses using BiliScreen’s sclera and
glasses segmentation algorithms. Note that the axes of the correlation plot are both in
log-scale, as is the x-axis of the Bland-Altman plot.



66

comparison of Figure 4.8 against Figure 4.9 reveals why this is the case. When the

optimal segmentation is used to extract features, the model underestimates high TSB

values. Because the addition of skin pixels can lead to overestimation, the

underestimation is reverted and those predictions are improved. The model still

overestimates all users, including those with normal and borderline bilirubin levels, but

the improvement on the elevated levels outweighs the smaller errors that are incurred

for those lower levels.

The results presented up until this point use all 8 images for each accessory, coming

from the 4 gaze directions and the 2 trials. Asking the user to look in different directions

provides different views of the sclera, some of which may exhibit more jaundice than

others. Although these pictures take less than a minute to collect in total, I recognize

that requesting users for 8 images can be burdensome. Using the optimal segmentation

results, there is little disadvantage to using the images from a single gaze direction; the

Pearson correlation coefficient for the box and glasses accessories varies by no more than

0.05 for any given direction.

Table 4.5 presents the Pearson correlation coefficient and error for BiliScreen’s

bilirubin measurements with the box and glasses accessories using the system’s

segmentation algorithm. Far more variation can be seen using the automatic

segmentation, particularly when using the glasses and looking straight ahead. This

could be because when the person looks straight ahead, the only parts of the sclera that

are exposed are thin regions near the frames of the glasses. These regions are more likely

to be covered in a shadow since they curve away from the camera and into the eye

socket. The shadow not only affects segmentation, but also the color that is conveyed to

the camera. Beyond this behavior, I do not believe there is any significant trend across

different gaze directions. Incorporating more images into the final calculation allows

BiliScreen to better tolerate an single image with incorrect segmentation. Sometimes, the

results improved because incorrectly segmented images were removed from the final

calculation. Other times, the results worsened because those same images were the only
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Table 4.5: BiliScreen measurement results across different subsets of images

BOX - Pearson correlation coefficient, mean error ± std error

All images 0.89, -0.09 ± 2.76 mg/dl

Looking up 0.84, -0.06 ± 3.03 mg/dl

Looking left 0.85, -0.15 ± 2.89 mg/dl

Looking right 0.82, -0.13 ± 3.21 mg/dl

Looking straight ahead 0.87, -0.05 ± 2.78 mg/dl

GLASSES - Pearson correlation coefficient, mean error ± std error

All images 0.78, 0.15 ± 3.55 mg/dl

Looking up 0.72, 0.06 ± 3.18 mg/dl

Looking left 0.82, -0.06 ± 3.22 mg/dl

Looking right 0.83, -0.31 ± 3.09 mg/dl

Looking straight ahead 0.51, 0.28 ± 4.72 mg/dl

ones available for final calculation.

4.4.3 BiliScreen as a Classifier

The previous analyses have shown the accuracy with which BiliScreen can estimate a

person’s bilirubin level. Accuracy is always important, especially for capturing trends

in the data. Nevertheless, the average user without a medical background is likely to

be more concerned about how their estimated bilirubin level is classified rather than the

value itself. In other words, if BiliScreen were to suggest that users with a borderline or

elevated bilirubin level refer to a doctor for further tests, they would want assurances

about BiliScreen’s sensitivity (true positive rate) and specificity (true negative rate). From

the perspective of the user, I group borderline and elevated bilirubin levels as positive

cases when the user would be referred to a doctor and normal bilirubin levels as negative

cases.
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Figure 4.10: ROC curves showing BiliScreen’s efficacy as a screening tool using the
(left) box and (right) glasses using the optimal sclera and glasses segmentation. For the
purposes of this analysis, normal bilirubin levels are considered negative cases, while
borderline and elevated levels are considered positive cases.

Figure 4.10 shows the ROC curves for BiliScreen as a classifier using the optimal

sclera and glasses segmentation. The area under the ROC curve (AUC) is 0.99 for the box

and 0.98 for the glasses. Using the pre-determined threshold of 1.3 mg/dl used by the

medical center, BiliScreen with the box achieves a sensitivity of 95.7% and a specificity of

97.4%. The threshold that maximizes the accuracy is only 0.1 mg/dl higher, increasing

the sensitivity to 97.4% without a change to the specificity. Since the BiliScreen model

with the glasses is more prone to overestimating lower bilirubin levels, it achieves a

sensitivity of 100% and a specificity of only 71.4%. The threshold that optimizes accuracy

leads to a sensitivity of 92.8% and a specificity of 94.3%.

Figure 4.11 shows the same curves for BiliScreen as a classifier using the system’s

segmentation algorithms. The AUC is 0.96 for the box and 0.95 for the glasses. Again,
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Figure 4.11: ROC curves showing BiliScreen’s efficacy as a screening tool using the (left)
box and (right) glasses using BiliScreen’s sclera and glasses segmentation algorithm. For
the purposes of this analysis, normal bilirubin levels are considered negative cases, while
borderline and elevated levels are considered positive cases.

using the pre-determined threshold of 1.3 mg/dl leads to high sensitivity and low

specificity since both models overestimate with the accidental incorporation of skin

pixels. Using the optimal thresholds that maximize accuracy, BiliScreen with the box

achieves a sensitivity of 89.7% and a specificity of 96.8%. With the glasses, BiliScreen has

a sensitivity of 82.1% and a specificity of 96.1%.

4.5 Discussion

4.5.1 Hardware

The BiliScreen box was designed to block out ambient lighting, allowing the

smartphone’s flash to replace an otherwise varying surface reflection component with a

constant one. However, the model associated with the box does not account for different
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camera sensors. All of the data for this study was collected using the same iPhone SE

device. Should another device be used, the BiliScreen model for the box would need to

account for the camera sensor’s response. This issue could be remedied in one of two

ways. First, images could be gathered from the different cameras and separate models

could be trained for each of them. This would clearly be a time-consuming endeavor, but

lead to results like the ones presented in the paper. An alternative approach would be to

perform a one-time calibration procedure as prescribed in Section 4.3.3 using a color

calibration card within the box. The resulting calibration matrix would then be stored

and applied on all images taken with the same device. This could be done offline by a

researcher with a collection of devices, or the user could be asked to do it before using

the BiliScreen app. The colored squares from the BiliScreen glasses could even be

integrated into the BiliScreen box so that a separate color calibration card does not need

to be purchased.

The latter approach assumes that a calibration matrix can perfectly correct an image’s

representation of color. Of course, this is the same assumption behind the BiliScreen

glasses. If the assumption is not true, then the effects of the surface reflection component

and the camera sensor’s response cannot be fully eliminated. I believe that this

assumption holds well enough that the lingering external effects on the sclera’s color are

negligible, but have yet to conduct a formal study on the matter.

4.5.2 Software

As mentioned in various parts of the paper, optimizations can be made throughout

BiliScreen’s pipeline. I use the mutual information scoring function [127] to

automatically select the top 5% of the features that best explain the sclera color. In the

future, I plan on manually examining the contributions of the features and determining

if certain feature calculations are redundant. The final bilirubin estimate is also based on

all 8 images captured per accessory. Taking so many images can be burdensome for the
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user, but I also believe that getting the different views of the sclera ensures that any

regions particularly affected by jaundice are captured. That being said, I have found that

using all of the images only provides a small improvement to the final results. I plan on

investigating this trade-off further.

4.5.3 Future Applications

BiliScreen does not directly assess a person’s risk of pancreatic cancer; it examines the

sclera for jaundice, one of pancreatic cancer’s symptoms. Jaundice appears in other

conditions, such as hepatitis and Gilbert’s syndrome. Examining if there are differences

between the visible symptoms of these diseases warrants further investigation.

The deployed implementation of BiliScreen depends on the target demographic for

whom the app is designed. If BiliScreen were to be deployed as a screening application, I

would prioritize notifying users about the possible risk of pancreatic cancer, even at the

cost of extra false positives. This would be implemented by lowering the decision

threshold for classifying a user’s bilirubin level to increase sensitivity and decrease

specificity; for example, lowering the decision threshold for BiliScreen with the box

accessory improves its sensitivity from 89.7% to 95.2% while degrading the specificity

from 96.8% to 71.2% (Figure 4.11, left). The downside to this change is that BiliScreen

could induce a great deal of stress by falsely informing users that they may have a

condition as serious as pancreatic cancer. To combat this issue, BiliScreen could require

multiple consistent, high measurements before prompting the user to consult a clinician.

If BiliScreen were to be deployed as a disease management tool, the trend of the data

would be most important to clinicians.
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Chapter 5

PUPILSCREEN

Traumatic brain injury (TBI) accounts for 30% of all injury-related deaths in the

United States [66]. TBI can occur in a variety of situations, including car accidents, falls,

and blunt force trauma. A concussion is a specific form of TBI caused by a swift blow to

the head; these injuries tend not to be life-threatening, but can have serious and

long-term effects on a person’s memory, motor abilities, and overall cognition [171]. One

area in which concussions have garnered national attention is sports, particularly contact

sports such as boxing, hockey, and American football. The CDC estimates that there are

roughly 3.8 million concussions per year in the US, and about half of them will go

undiagnosed [96]. Patients suffering a concussion have a 600% increased risk of a future

head injury and 15% increased risk of permanent cognitive deficits [96]. This is

particularly more problematic for younger athletes who are not as well-educated on

concussion prevention measures such as proper tackling technique. Roughly 250,000

young Americans (<20 years old) were treated for sports-related concussions in

2009 [32]. High school football players are 3 times more likely to suffer a catastrophic

head injury than college football players [21]. Athletic departments with major funding

can afford to have a team doctor with years of experience on-hand to diagnose

concussions. For teams that are not as well-funded (e.g., pee-wee, middle school, high

school), a school nurse, volunteer, or parent must put themselves in the same position as

those doctors, but without the same tools or knowledge at their disposal. Identifying

concussions immediately is essential because allowing a concussed athlete to return to

play can lead to further significant injury [162]. There exists a need for accessible

concussion screening that anyone can use at any moment. My proposed system,
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PupilScreen, is meant to address this need by using a technology that most people have

within arm’s reach: a smartphone.

The methods that team doctors currently use to assess the probability of a concussion

on the sidelines fall in one of two categories. The first category is task-based methods,

which grade the performance of an athlete at a particular task using quantitative

measures. For example, the King-Devick test [81] requires an athlete to read single digit

numbers from left-to-right in different configurations. The second category includes

survey-based methods, such as the Sport Concussion Assessment Tool (SCAT) 1.

Although a great deal of research supports the efficacy of these methods [80, 82], they

capture indirect effects of concussions, require the athlete to be responsive, and take

minutes to complete. These methods also require baseline measurements taken at the

beginning of the season, which Broglio et al. [26] found were not repeatable for 118

healthy student volunteers. Furthermore, there is anecdotal evidence that athletes

sometimes intentionally fail the baseline assessment so that there is little difference

following an injury and they can remain in play [160].

A more quantitative method to assess a TBI is to check a person’s pupillary light reflex

(PLR), or the manner in which their pupils react to a light stimulus. The PLR of those

who have suffered a TBI is typically either slower or not as pronounced [30]. The clinical

gold standard for measuring the PLR uses a device called a pupillometer. Pupillometers

are expensive (∼$4,500 USD) and are therefore mainly used in hospital intensive care

units. Another method for assessing the PLR is through a penlight exam, in which a

clinician directs a penlight towards each of the patient’s eyes and observes the pupils’

responses. This procedure is simple to perform, but has many drawbacks, including a lack

of standardization, a need for deliberate training, and poor inter-observer reliability [182].

Those who provide first aid in emergency situations (e.g., EMTs and battlefield medics)

will often conduct penlight exams despite these limitations because rapid assessment is

1http://www.sportconcussions.com/html/SCAT3.pdf
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prioritized over precision.

PupilScreen combines the repeatability, accuracy, and precision of a pupillometer

with the ubiquity and convenience of the penlight test for quantifying a person’s PLR.

The PupilScreen system consists of two ubiquitous components: a smartphone app and

a box (Figure 5.1). Most people own a smartphone, and the box can be easily created

since it does not require any wiring or expensive components. This means that

PupilScreen can be available to almost anyone just hours before a sports event. The

PupilScreen app records an 8-second video of a person’s eyes as the pupils constrict in

response to the smartphone’s flash. The video is analyzed by convolutional neural

networks (CNNs) in order to estimate the diameter of the pupils in each frame. I

explored two different architectures. The first architecture uses two CNNs in sequence,

where the first estimates the locations of the pupils and the second estimates their

diameters given images cropped around their locations. The second architecture uses a

fully convolutional network to perform pixel-wise segmentation. By examining how the

pupil diameter changes over time, PupilScreen extracts metrics used by clinicians for

diagnosis (e.g., constriction velocity, magnitude of diameter change). To standardize the

results of the PupilScreen app, the smartphone is placed in a 3D-printed box. The box

simultaneously eliminates ambient lighting conditions and controls the distance

between the person’s face and the flash.

Training CNNs requires a large quantity of diverse data, which is difficult to collect

from patients with TBI. Therefore, I evaluated PupilScreen’s ability to track the PLR on a

dataset from 42 healthy adults. The range of pupil sizes encountered in non-reactive

pupils is a subset of that encountered in reactive pupils; because the networks are

trained on video frames in isolation, training PupilScreen on data from healthy

individuals allows it to measure pupil diameter in individual video frames regardless of

pupil reactivity. I found through my analysis that the PupilScreen was able to track pupil

diameter with a median error of 0.30 mm with the fully convolutional network, the more

accurate of the two approaches. Meeker et al. [165] found that manual pupil examination
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Figure 5.1: PupilScreen is a system that measures the pupillary light reflex to determine
the severity of a traumatic brain injury. A smartphone app records a video of the patient’s
eyes as the camera’s flash illuminates them. The VR headset-like box controls the position
of the phone and the lighting that reaches the eyes.

has a median error of 0.5 mm, and a clinical pupillometer has a median error of 0.23 mm,

which places the accuracy of PupilScreen between the two. PupilScreen was also able to

track the pupil center with a median error of 0.20 mm. Using information about the

pupil diameter over time, PupilScreen extracts three clinically relevant measurements:

constriction amplitude, percentage, and velocity. I found that PupilScreen estimates

constriction amplitude with a mean absolute error of 0.62 mm for a range of measured

amplitudes that spanned 0.32-6.02 mm, constriction percentage with a mean absolute

error of 6.43% for a range that spanned 6.21-62.00%, and max constriction velocity with a

mean absolute error of 1.78 mm/s for a range that spanned 1.37-8.99 mm/s. To support
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PupilScreen’s efficacy as a diagnostic tool, I conducted a pilot clinical evaluation with six

patients who had suffered a TBI. I found that clinicians were able to distinguish between

normal and abnormal PLR curves produced by PupilScreen with almost perfect

accuracy.

In designing a smartphone-based pupillometry system, the main challenges are:

1. Designing a controlled setup that is portable and inexpensive, and

2. Accurately identifying the pupils in video using only visible light.

My contribution comes in four parts:

1. The design and implementation of the PupilScreen system, which allows a

smartphone to perform repeatable PLR tests at a fraction of the cost of a clinical

device,

2. Two different CNN-based approaches for estimating the pupil diameter in videos,

3. An evaluation of PupilScreen’s accuracy on 42 healthy participants, and

4. An evaluation of PupilScreen’s ability to assist with diagnosis on 6 individuals who

have suffered a TBI.

5.1 Background

Papers by Martinez-Ricarte et al. [157], Larson and Behrends [132], and Zafar and

Suarez [264] provide thorough discussions on the mechanics of the pupil, the

pathophysiology of the PLR, and the diagnostic power of the PLR. I summarize their

content here for a broader audience, but refer the reader to their papers for a more

detailed discussion of the PLR.
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5.1.1 The Characteristics of the PLR

A normal PLR is defined as symmetric constriction or dilation of both pupils in response

to a light stimulus or its absence, respectively. The pupil size must change by a non-

trivial amount within a specified time frame and should change in both eyes, regardless

of which eye is stimulated. For example, when a person covers one eye while the other is

exposed to bright light, the pupils of both the covered and exposed eyes should constrict,

producing a phenomenon known as the consensual response.

Figure 5.2: A PLR curve annotated with the five common descriptive measures: (1)
latency, (2) constriction velocity, (3) constriction amplitude, (4) constriction percentage,
and (5) dilation velocity. An abnormal PLR curve with increased latency, slower
velocities, and diminished amplitude is also included for comparison.

When given pupil diameter as a function of time, clinicians focus on five simpler

quantitative measures (Figure 5.2):

• Latency (ms): the time between the beginning of the light stimulus and the start of

pupil constriction
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• Constriction velocity (mm/s): the speed at which pupil constricts; reported as mean

or max

• Constriction amplitude (mm): the difference between the maximum pupil diameter

before light stimulation and minimum pupil diameter after light stimulation

• Constriction percentage (%): the constriction amplitude expressed as a percentage

of the initial size

• Dilation velocity (mm/s): the speed at which the pupil dilates; reported as mean or

max

5.1.2 Diagnostic Significance of the PLR

Because the neural pathways underlying the PLR include multiple brain regions and

traverse many others, it is sensitive to a variety of injuries [250]. My motivating use case

is traumatic brain injury. When the brain shifts inside the skull, it has the potential to

injure both the cranial nerves carrying signals necessary for the production of the PLR or

the brain regions that process these signals. A survey by Zafar et al. [264] in 2014 notes

that the literature relating PLR to concussions is limited because it often includes a small

number of patients (≤10 patients with TBI) or individual case studies; however,

researchers such as Ciuffreda et al. [234, 238, 239, 237, 240] have recently published the

results of studies with larger datasets. In 2015, Thiagarajan et al. [234] quantitatively

evaluated the PLRs of individuals with non-blast-induced, chronic, mild TBI (mTBI).

That study included 15 healthy individuals and 17 patients with mTBI. Thiagarajan et al.

found statistically significant differences between the two populations for most of the

PLR metrics listed in Section 5.1.1. In a study published a year later, Truong et al. [237]

carried out a larger study with 40 healthy individuals and 32 patients with mTBI.

Beyond the larger study population, Truong et al. also studied how different light

stimuli (e.g., pulses, step changes, different colors) could be used to better discriminate
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certain PLR metrics. Populations of the same size were later examined to determine how

pupillary asymmetry [239], photosensitivity [238], and refractive errors [240] affected the

PLR. With more accessible pupillometry, such as that provided by PupilScreen, I believe

that larger scale studies will be easier than ever before, particularly for examining the

immediate effects on the PLR following a crisis.

Changes in the PLR are much better described by the literature in the context of

severe TBI since those patients are often hospitalized and the changes are more obvious

as a result of the severe cerebral dysfunction. Taylor et al. [232], for example, found that

elevated intracranial pressure (ICP) for >15 minutes in patients with midline shift was

associated with a decrease in pupillary constriction velocity. The PLR has also been

examined as an indicator of the outcomes for patients following cardiac arrest. In a case

study with 30 patients, Behrends et al. [18] found that the presence of a reactive pupil

during the first five minutes of CPR was associated with increased survival and good

neurologic outcome.

5.1.3 Techniques for Measuring the PLR

There are two methods used by clinicians to measure the PLR. The clinical gold standard

method uses a device called a pupillometer. Infrared-based pupillometry takes

advantage of the fact that there is a better demarcated boundary between the pupil and

the iris when infrared imaging is used. While pupil diameter is tracked using infrared

light, a ring of white LEDs stimulates the eye, causing the pupillary constriction. The

components needed to make a pupillometer can be inexpensive, but the total product

costs ∼$4,500 USD because, among other reasons, it is a self-contained system with

proprietary algorithms and strict hardware requirements. Nevertheless, pupillometers

provide two main benefits: precision and consistency. A study conducted by Meeker

et al. [165] revealed that, for a modest participant pool, a pupillometer can track the

pupil diameter with a median error of 0.23 mm. Couret et al. [45] asked multiple
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clinicians to perform PLR measurements on 200 healthy volunteers in a variety of

ambient lighting conditions. They found high intra-class correlation for maximum

resting pupil size (0.95) and minimum pupil size after light stimulation (0.87) regardless

of ambient lighting or device operator.

Figure 5.3: A penlight test being performed by a clinician.

A low-cost alternative for measuring the PLR involves using a penlight - a pen-sized

flashlight (Figure 5.3). A penlight test is performed by directing the penlight toward and

away from the patient’s eye. Because the PLR is manually observed by a clinician,

penlight-based pupil measurements are more likely to be inaccurate and imprecise.

Meeker et al. [165] found that manual measurement of pupil diameter resulted in a

median error of 0.5 mm, more than twice that of a pupillometer. Couret et al. [45] found

a poor Spearman’s rank correlation coefficient (0.75) between manual pupil size

measurements and pupillometer readings. Only 64% of the cases when volunteers had

pupils smaller than 2 mm were properly identified, and only half of the cases of

anisocoria (i.e.,unequal pupil sizes) were caught. Larson et al. [133] note the inability of
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clinicians to detect small, but clinically significant responses. Characteristics such as

constriction velocity and amplitude also cannot be measured in absolute terms when

using a penlight; instead of reporting a constriction velocity as 3.8 mm/s, observers can

only describe the PLR as “normal”, “sluggish”, or “fixed”. Penlight exams lack

standardization as well. Clinicians purchase penlights from different companies, each

with their own brightness specifications. Even if two health care providers use the same

penlight, the patient may not experience the same light stimulus because of how the

clinicians hold their penlights (i.e., distance and angle) or due to differences in ambient

lighting conditions. Prior work has also discussed how penlight tests can lead to poor

inter-observer reliability in PLR characteristics. Olson et al. [182] performed a

single-blinded observational study where two practitioners were asked provide

subjective scores for pupil reactivity. Across 2,329 paired assessments, Cohen’s kappa

coefficient was only moderate for pupil size (κ = 0.54), shape (κ = 0.62), and reactivity (κ

= 0.40). In fact, only 33.3% of the pupils that were judged to be non-reactive by the

practitioners were scored as non-reactive by pupillometry.

My prototype of PupilScreen is the first step towards combining the advantages of

a pupillometer (repeatability, accuracy, precision) with the advantages of a penlight test

(ubiquity, convenience). Before discussing how PupilScreen works, I will first provide an

overview of pertinent related work.

5.2 Related Work

In this section, I summarize previous work concerning concussion diagnostics, gaze

tracking, and pupil measurement.

5.2.1 Concussion Diagnostic Applications

Regarding concussions, metrics other than the PLR have been examined for diagnosis.

Maruta et al. [158, 159] measured visual tracking performance in terms of gaze positional
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error relative to a target and found that the performance variability increased for those

with a TBI. Joiiv Lindsay [145] is one of the many researchers who have noted that

involuntary eye movements are more prevalent in those with a TBI. Such work has been

conducted in a clinical setting with dedicated devices; along with measuring the PLR, I

look forward to investigating these metrics with PupilScreen in the future.

Lee et al. [137] provide a thorough survey of publicly available smartphone and

tablet apps that are intended for assessing sports-related concussions. I refer the reader

to their survey for a complete list of the smartphone apps that were examined, which

includes both apps that are intended for non-medical personnel (e.g., coaches or parents)

and medical personnel (e.g., team doctors). Lee et al. compared the purpose of each app

to the SCAT2 and found that all of them exhibited partial or imperfect compliance to it.

Furthermore, they found that the apps serve as a means of presenting, managing, and

documenting various aspects of the SCAT2 rather than automating them.

5.2.2 Gaze Tracking

My work proposes a novel method for measuring pupil diameter. Although gaze tracking

is a different problem - one that cares about the position of the pupil relative to the eye -

the techniques used in both problems share many similarities.

The easiest way to track gaze involves the use of infrared light to emphasize the

pupils. Infrared light is invisible to the naked eye and reflects off of the cornea, a fact

which is leveraged in one of two ways. In bright pupil tracking, the light source is

aligned with the camera so that the reflection can be tracked; in dark pupil tracking, the

light source is off-angle so the pupil remains darker than the rest of the eye. There are a

variety of commercial products by companies such as Tobii and LC Technologies that

leverage this phenomenon for pupil detection. These products are primarily intended

for controlled, desktop situations, but researchers have proposed form factors meant for

on-site and outdoor scenarios. Fischer and van den Heever [68], Świrski et al. [229], and
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Kassner et al. [117] are just three examples of techniques that take advantage of

custom-designed headsets with an infrared camera pointed directly at the eyes for gaze

tracking. All three of those systems are intended for gaze tracking and are evaluated as

such, but their algorithms calculate both the pupil center and diameter as a means to that

end. It should also be noted that Fisher and van den Heever’s device uses gaze tracking

alongside visual tasks like the King-Devick test with the intent of diagnosing

sports-related concussions on the sideline, although there is no formal study on how that

data improves the power of those tests.

There is a variety of methods for tracking the pupil without the help of infrared light.

Qualcomm’s SnapDragon SDK2 provides facial features like gaze direction using a

smartphone’s front-facing camera, but their algorithm is proprietary. Timm and

Barth [235] propose a mean of gradients approach for identifying the pupil center;

essentially, the center is found using an optimization technique that identifies the pixel

where a vector field of image intensity gradients is most likely to converge. For

smartphones and tablets, EyeTab [261] relies on the observation that the pupil and the

iris are normally concentric, so the center of the ellipse that best fits the edge between the

iris and the sclera also corresponds to the center of the pupil.

Fuhl et al. have proposed a number of methods for detecting the pupil center.

ExCuSe [77] utilizes two different techniques depending on whether the image contains

a reflection or not. If there is a reflection, curved edges are found using dynamic

thresholding and morphological operations; if there is no reflection, the coarse center is

estimated using histograms oriented at various angles and then refined using an

iterative ellipse-fitting technique [141]. ElSe [76] defines the pupil as the location where

an image of the eye responds to two pre-determined convolutional filters: a circular

mean filter and a surface difference filter. Finally, PupilNet [78] uses two CNNs for gaze

tracking; the first CNN returns a coarse pupil center estimate, which is used to select a

2https://developer.qualcomm.com/software/snapdragon-sdk-android
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region of interest that is fed into a second CNN to refine the prediction.

In this work, I explored two different network architectures. The first architecture

is similar to PupilNet in that it involves two CNNs in sequence. However, instead of

using the second network to provide a more precise estimate of the pupil center, I use the

second network to estimate the pupil diameter. Although the first network only provides

a coarse estimate of the pupil center, I demonstrate that it is sufficiently accurate for my

purposes. The second architecture is an implementation of FCN-8, a fully-convolutional

neural network proposed by Long et al. [147] for achieving pixel-wise segmentation.

5.2.3 Pupil Measurement

Researchers have extended existing techniques for identifying the pupil center to measure

the contour of the pupil. Starburst [141] initializes an estimate of the pupil center using

the mean of gradients approach. The algorithm then increments a marker in different

directions from that seed until the first strong edge (defined by the gradient along this

path crossing some threshold, which is expected to occur between the iris and pupil)

is reached. An ellipse is fit to those edge points and its center is used as the seed for

subsequent iterations of the same procedure until convergence.

A subset of the work in this area is particularly motivated by the use of pupil dilation

as a proxy for assessing cognitive load. PupilWare [203] proposes improvements on the

Starburst technique for use with a desktop web camera. These improvements include

avoiding directions that could contain eyelash shadows and adding randomness to seed

selection. Klingner, Kuman, and Hanrahan [125] do not discuss their pupil measurement

algorithm in great detail, but provide a deeper analysis on task-evoked pupillary

responses.

Many of the non-infrared-based techniques anecdotally cite issues for people with

dark irises, even going as far as removing users with extremely dark irises from their

studies. They primarily rely on the presence of an edge between the iris and the pupil.
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PupilScreen uses a completely model-based approach that can learn features beyond

edges (e.g., gradients and contiguous black pixels) for tracking the pupil.

5.3 Data Collection

I collected video recordings using the PupilScreen app and box to train its CNNs and

evaluate its ability to track pupil diameter. Since my approach to segmenting pupils

relies on CNNs, I require a large number of training examples from individuals with

various pupil sizes and iris colors. This is difficult to attain through a patient population

with TBI. Cases of TBI are limited, and the pupils of those with TBI usually stay a fixed

size. Because of this, my networks are trained on data from healthy volunteers at the

University of Washington and Harborview Medical Center. Below, I elaborate on the

diversity of the participant pool. I then describe my data collection procedure, including

the design of the PupilScreen box and my methods for gathering ground truth

measurements. In Section 5.5.4, wIe present a preliminary evaluation conducted on six

individuals with TBI to examine PupilScreen’s clinical efficacy. All facets of my study

were approved by the University of Washington’s Institutional Review Board.

5.3.1 Enrollment

My training dataset comes from 42 volunteers: 16 males and 26 females. Typical non-

infrared computer vision-based systems are reliant on determining the border between

the iris and the pupil, which is more obvious for those with light blue eyes than those with

dark brown eyes. For this reason, it was important to recruit participants with various iris

colors. My study includes a balanced mix of iris colors: 17 blue, 20 brown, and 5 with a

noticeable gradient between different colors. In most cases, the irises that were classified

as mixed were light brown near the pupil but primarily blue.

Ideally, ethnicity should have no effect on PupilScreen’s ability to measure the pupil

diameter since the two are uncorrelated. I crop the images beforehand to reduce the
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Table 5.1: Participant demographics (N = 42)

SEX - N (%)

Male 16 (38.1%)

Female 26 (61.9%)

IRIS COLOR - N (%)

Blue 17 (40.5%)

Brown 20 (47.6%)

Mixed 5 (11.9%)

number of skin-related pixels that are utilized by the CNNs; however, since my model-

based approach for tracking the pupil is agnostic to the eye’s structure, no guarantees can

be made that the CNNs will not learn to estimate the pupil center or diameter from skin

tone features. Although I did not specifically ask participants for ethnicity information, I

note that one-sixth of the participants had a darker skin complexion.

5.3.2 Data Collection Application

All of the data was collected by the researchers using a custom app on an iPhone SE. The

phone was placed into a slot in the back of the PupilScreen box (Figure 5.4). The design

of the box is the same as the one used in BiliScreen [155], a project by a subset of this

work’s authors that aims to estimate the color of a person’s sclera to detect cases of

jaundice. The box-phone combination serves three purposes: (1) the box controls the

position of the phone relative to the person’s face, including the distance to and

alignment with the face, (2) the box eliminates the effects of ambient lighting conditions,

and (3) the phone provides its own lighting using the flash. The dimensions of the box

are loosely modeled after the Google Cardboard. Besides the fact that the camera is
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Figure 5.4: A 3D rendering of the PupilScreen box. The smartphone’s flash lies in the
horizontal center of the box. The box has a hole on the side so that a neutral density filter
and a diffuser can be aligned with the flash using a sliding stick.

centered for the PupilScreen box, rather than the screen as in the Google Cardboard, the

main difference between the two is the fact that the PupilScreen box is deeper. Having

the camera close to the participant’s face increases the effective resolution of their eyes,

which allows PupilScreen to detect smaller changes in pupil diameter and measure the

PLR with increased precision. On the other hand, moving the phone further away allows

the camera to see both eyes at once and reduces the discomfort caused by the intense

flash.

Although the box used in this study was 3D-printed for durability, I believe that it

could be made with an even cheaper material like cardboard (provided that it is sturdy

enough to support the weight of the phone). Also note that there is no electronic

connection between the phone and the box, simplifying its manufacturing requirements.

Apple iOS 9 does not provide complete dimming control over the brightness of the flash

LED. At close distances, participants from a pilot study found the intensity of the light to

be uncomfortable. To make the light more manageable, a neutral density filter and



88

diffuser were placed directly in front of the flash using a sliding stick. These components

were chosen because they had precise specifications available online, but they could be

replaced with a cheaper alternative like a sheet of white computer paper in the future.

Prior to putting the box up to their face, participants were asked to take off glasses

if they wore them. Once the phone was placed in the box and the participant held it up

to their face, the flash was turned on briefly and autofocus was enabled. The resulting

camera focus was fixed for the remainder of the study to avoid blurriness as the lighting

in the box changed. The flash was then turned off and after a brief pause to allow the

pupils to recover, data collection commenced. The video was recorded at 30 fps with

1920×1080 resolution. After an audible 3-second countdown from the phone’s speakers,

the flash illuminated the participant’s eyes. The stark change in lighting maximized the

degree to which the pupil constricted, akin to the difference experienced when using a

pupillometer. The recording stayed on for another five seconds, resulting in an 8-second

long recording. The five second period after the introduction of the light stimulus was

far longer than what was needed to capture the PLR, but provided extra video frames

for evaluation. For each study participant, the PLR was recorded three times. Between

recordings, a one-minute break was added to allow the participant to rest their eyes.

5.3.3 Ground Truth Measurements

Videos were manually annotated to generate ground truth labels. Using custom

software, two researchers labeled frames by selecting points along the edges of the

pupils and letting OpenCV’s ellipse fitting algorithm generate a corresponding outline

(Figure 5.5). The researchers could see and adjust the outlines to better fit the images. If

the pupil was difficult to distinguish from the iris, the researchers could adjust the

contrast to make it more visible. If the pupil was still too difficult to see after that, either

because of poor focus or lighting, the frame was skipped; this only happened for 1.8% of

the total frames encountered. The points were fit to an ellipse because not all pupils are
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Figure 5.5: A selection of manually annotated images of pupils zoomed in on the region
of interest. Note that although the pupil may seem indistinct from the iris in some of the
images above, the labeling was performed on much larger monitors with better contrast
than what appears in print.

circular. Since pupillometry is only concerned with a single pupil diameter, the ellipses

were converted to circles by averaging their axes. With this method, the pupil diameters

were labeled in pixels. The researchers labeled every fifth frame in the three videos from

each user. Each video was 8 seconds long, but the first 3 seconds occur before the flash

was turned on, resulting in 5 seconds × 30 frames/second × (1/5 frames) × 3 videos =

90 labeled frames per person. Frames were labeled independently of one another to

avoid biases between frames; however, this led to greater variation between consecutive

frames that can be primarily attributed to human error. A 3rd-order Savitzky-Golay filter

was applied to temporally smooth the pupil center and diameter labels. To quantify the

agreement of the labels across the researchers, both of them labeled a common set of 5

users (15 videos, 450 frames). The average difference between the smoothed pupil center

labels was 3.46 px, which translates to 0.27 mm. The average difference between the

smoothed pupil diameter labels was 2.00 px, which translates to 0.16 mm. Note that

these variations are not independent; if a researcher underestimated the extent of an

edge, the labeled center would move away from that edge and the labeled diameter
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would be lower than the actual value. The degree of inter-researcher agreement can also

be quantified using the intersection-over-union (IoU) measure, a standard metric for

segmentation agreement between two regions. The mean IoU for the researchers’ labels

was 83.0%. Note that the IoU measure is calculated relative to the total area of the two

labeled pupils. If the pupil center labels for a 3 mm pupil were only off by a single pixel,

that difference alone would lead to an IoU score of 93.8%.

Although a clinical-grade pupillometer could have provided an alternative method

for quantifying the PLR, its results would not have been directly comparable to

PupilScreen. The two setups have light stimuli with different intensities, which would

result in different magnitudes of pupil constriction. Furthermore, PupilScreen eliminates

the effect of ambient lighting because the box completely encloses the patient’s eyes,

whereas pupillometers do not since they are used in hospitals with roughly standard

lighting conditions. Infrared imaging could have been used to provide a comparative

ground truth measurement of pupil diameter; however, an algorithm still would have

been needed to turn those frames into pupil diameters, and that algorithm would have

needed its own validation.

5.4 Algorithm

In this section, I will describe how the video data was pre-processed before being input

to the CNNs. I then follow by describing the architecture of the CNNs used to estimate

the pupil center and the pupil diameter, the post-processing of the CNN outputs, and the

specifics of the CNN training.

5.4.1 Pre-processing

Videos were recorded at 30 fps with 1920×1080 resolution. Treating each pixel as an

individual input feature produces a very large input layer with a significant amount of

unnecessary information; pixels around the eye socket provide no information about the
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Figure 5.6: Each frame was cropped to create two input images for the CNNs: one for the
left eye and one for the right eye. The image of the right eye and its label were flipped to
make the two images comparable.

pupil, and pixels on the left and right sides of the image should be considered

independently in order to catch cases in which the pupils behave differently. I attempted

to crop around the eyes using off-the-shelf eye detection algorithms, but found that they

failed in many cases. This may have been because the detection algorithms rely on the

presence of other facial features (e.g., nose) that are obscured by the PupilScreen box.

Instead, the conservative cropping bounds in Figure 5.6 are used. The bottom third is

cropped off because it only contains the box. The remainder of the video frame is split

into two halves - left and right - to produce one image per pupil. To make the images

comparable and allow a single CNN to handle each task, the image of the right eye and

the coordinates of its pupil center label are flipped horizontally. To emphasize the pupil,

the image is converted to the HSL color space and contrast-limited adaptive histogram

equalization (CLAHE) [195] is applied to the lightness (L) channel. In short, CLAHE

avoids the pitfalls of global histogram equalization by dividing an image into small tiles

(88 px in this case) and then equalizing only within those individual tiles.
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5.4.2 CNN Architectures

Two different architectures were tested for measuring the size of the pupil. I describe their

inspiration and implementation details below.

First Architecture: Sequential CNNs

Figure 5.7: The first architecture that was explored for PupilScreen. The top numbers
indicate the number of filters in the convolutional layers or neurons in the fully-
connected layers. The bottom numbers specify filter dimensions. For example, the first
convolutional layer in both networks applies 16 5×5 px filters. There are 2×2 px mean-
pooling layers after each convolutional layer, but they are omitted for space. (top) The
first CNN takes the original image as an input and returns an estimate of the pupil’s
location. (bottom) Given the location of the pupil center, a region of interest is cropped
from the original image and provided to the second CNN to estimate pupil diameter.

The first architecture was similar to that of PupilNet by Fuhl et al. [78], which uses

two networks in sequence to arrive at a precise estimate of the pupil center. The intuition

behind their approach was that the first network reduces the search space for the pupil by
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roughly localizing the pupil center, allowing for the second network to ignore irrelevant

pixels and examine a specific region in more detail. Inspired by that intuition, I also

explored the use of two networks for pupil measurement. The first network serves the

same purpose, but the two applications differ in the second network. Rather than learning

a finer pupil center measurement, I train the second network to learn the pupil diameter.

I demonstrate that even if the pupil is not exactly centered using the output of the first

network, the second network can be robust enough to handle those issues.

Figure 5.7 illustrates the details of the first architecture. The first network (Figure 5.7,

top) is trained to accept an image from the pre-processing step as input and return the

location of the pupil center. Before being input to the network, the image is

downsampled by a factor of 4. The network has 5 convolutional layers, each with a

rectified linear (ReLU) activation function followed by 2×2 px mean-pooling layers.

Mean-pooling was chosen over max-pooling because max-pooling results in

translation-independent behavior that would have been undesirable for capturing

location information. The final layer of the first network is fully-connected to compress

information across all filters and sub-regions to an x- and y-coordinate estimate. The

output labels were normalized according to the mean and standard deviation of the

pupil location across the entire dataset. This was done to ensure that the same error in

either direction would equally affect the network’s weights during backpropagation.

Using the output of the first network, a region of interest that is roughly 1/9th of the

original image’s size is cropped and centered about the estimated pupil. That region is

provided to the second network (Figure 5.7, bottom), which is trained to estimate the

pupil diameter. The network has the same architecture as the first one except for the fact

that it produces a single output: the pupil diameter.

The number of layers was determined empirically to balance the tradeoff between

network size and accuracy. Smaller networks are desirable so that they can fit on the

smartphone, but I found that using fewer layers did not yield satisfactory results. The

other specifics of the networks (e.g., more smaller filters as the network gets deeper,
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pooling after each set of convolutional filters) were based on suggestions from

literature [88], but are certainly an area for future investigation.

Second Architecture: Fully Convolutional

Figure 5.8: The second architecture assigns each pixel to one of two classes: “pupil”
(white) or “non-pupil” (black). The largest contiguous cluster of “pupil” pixels is
assumed to be the pupil, and its border is smoothed so that it can be fit to an ellipse.

The first network architecture learns the pixel indices of the pupil center and the

diameter of the pupil, but treats them just like any other continuous outputs rather than

explicit location and size information. The second network architecture takes a different

approach, viewing the problem as one of explicit segmentation. The goal of

segmentation is to produce a label for every single pixel that specifies the object to which

it belongs; as illustrated in Figure 5.8, there are two classes for the purposes of

PupilScreen: “pupil” and “non-pupil”. I implemented FCN-8, a fully convolutional

architecture proposed by Long et al. [147]. In short, fully convolutional networks are

normally based on a pre-trained convolutional network for image classification (e.g.,

VGG16 [225]). The final classifier layer is removed and replaced by layers that

deconvolve, or upsample, the downsampled predictions to their original resolution. For

the sake of network size, I downsample images by a factor of 2 before inputting them to
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the network.

Once pixel-wise predictions are produced, there is still the matter of measuring a pupil

diameter. The largest contiguous cluster of pixels with the “pupil” label is treated as the

pupil. The border of that cluster is smoothed using median blurring and then fit to an

ellipse. The mean of the ellipse’s two axes is treated as the pupil diameter for that frame.

5.4.3 Training

Both architectures were trained with backpropagation using batches composed of 10

images randomly sampled from the training set. To ensure that there was no overlap

between training and testing data, the evaluation was conducted using 5-fold

cross-validation across users; in other words, if there are N users, N/5 users are held out

each time for testing and the remaining 4×N/5 users are used for training. Recall that

three videos were recorded for each user. All networks were trained for 10 epochs per

fold; this number was determined empirically based on the convergence of the

smoothed loss function outputs across the training data. On average, training the first

network architecture took 14 mins per fold, resulting in a total training time of 14 mins ×

5 folds × 2 networks = 2 hours 20 mins. Training the second network architecture took

1 hours 59 mins per fold, resulting in a total training time of 119 mins × 5 folds = 9 hours

55 mins. Computation was carried out by a single NVidia GeForce Titan X GPU. Testing

an individual frame through either network architecture took approximately 2 ms,

which means that it would take the system roughly 2 ms × 30 frame/second × 5 seconds

= 300 ms to test an entire video. The networks in the sequential CNN architecture were

trained using batch gradient descent in order to minimize the L2 loss. The fully

convolutional network was trained in the same way to minimize the per-pixel

multinomial logistic loss.

To ensure that the dataset was not significantly biased towards images of fully

constricted pupils, only frames within the first 3 seconds of the light stimulus were used
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for training. To both generate more training samples and further promote training data

diversity, training images and their associated labels were randomly jittered together

(i.e., translated by a small amount). That amount was at most 10% of the input image

dimensions for the first network, which was determined based on the variation of the

pupil center observed in the videos. The jitter amount was at most 15% of the input

image dimensions for the second network in order to sufficiently cover the spread of

pupil center predictions from the first network. In this latter case, jittering the input

images allows the second network to be trained to tolerate such errors.

5.4.4 Extracting PLR Metrics

In the end, the consecutive CNNs in PupilScreen take an individual image as input and

return the pupil’s diameter as output. A PLR curve shows a patient’s pupil diameter as a

function of time following a light stimulus. To construct this, videos are passed through

the networks frame-by-frame. From that point, there are three post-processing steps to

make the resulting curve more comparable to the curves provided by pupillometers: (1)

Extreme prediction outliers are removed using heuristics based on human physiology:

pupils should not be smaller than 1 mm or larger than 10 mm, and the pupil diameter

should not change by more than 10 mm/s [30]. (2) Like the ground truth labels, the

predictions are smoothed using a 3rd-order Savitzky-Golay filter. This removes

undesirable fluctuations between frames that occur because the pupil diameter is

estimated from each frame individually. (3) Predictions are scaled from pixels to

millimeters using a constant factor that was estimated through a device calibration

procedure. A fiducial of known dimensions was placed in front of the camera at roughly

the same distance as the user’s eyes; its dimensions were measured in pixels and the

calculated ratio was applied to all videos. This approach is not perfect since different

people have different eye socket depths. Nevertheless, the ground truth labels used for

analyses are all in pixels, so the conversion is primarily used to transform the results into
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more relevant units.

Relevant clinical measures (Section 5.1.1) can be extracted from the smoothed and

scaled PLR curve. Calculations for the constriction amplitude and the constriction

percentage require the minimum and maximum pupil diameter. The maximum pupil

diameter always occurs at the beginning of the video since the pupil is most dilated

before the light stimulus. After the pupil constricts, its diameter can fluctuate as it

reaches its final equilibrium size. Because of this, the minimum diameter is identified by

taking the average diameter in the last second. The maximum constriction velocity is

calculated by computing the maximum of the centered derivatives across the entire

curve. Although PupilScreen is designed to measure the latency between the time of the

light stimulus and when the pupil begins to constrict, I found that the frame rate limits

the granularity of the calculation ((30 fps)−1 = 0.03 s/frame) and the usefulness of that

measure, so I ignore it for this study.

5.5 Results

Since PupilScreen is a data-driven algorithm, the diversity of the data used to train the

algorithm is important. Section 5.3.1 details the diversity of the participants, but in

Section 5.5.1, I describe the quantitative diversity of the pupil center and diameter. I then

present the accuracy of PupilScreen’s ability to localize and measure the pupil with the

two different architectures that were explored, followed by an examination of how the

errors manifest in the PLR curves and affect the PLR metrics. I conclude with a brief

evaluation of PupilScreen’s clinical efficacy, including how accurately clinicians can

make diagnostic decisions based on PupilScreen’s estimated PLR curves and their

comments on PupilScreen’s design.
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Figure 5.9: (left) The distribution of the pupil centers across all users. (right) The
distribution of the pupil diameters across all users.

5.5.1 Data Distribution

The left side of Figure 5.9 shows the distribution of the pupil center location across all

users after the video frames were cropped, flipped, and scaled to millimeters. The

distribution is centered at the mean pupil center for reference. The distribution has a

standard deviation of 3.22 mm in the x-direction. This spread can be attributed to

variation in interpupillary distance and the fact that participants did not perfectly align

their face within the PupilScreen box. The distribution has a standard deviation of

4.18 mm in the y-direction, which can also be attributed to different face shapes and the

placement of the PupilScreen box relative to the participant’s face.

The right half of Figure 5.9 shows the distribution of the pupil diameter scaled to

millimeters. The distribution has a mean of 4.39 mm and a standard deviation of 1.38 mm.

However, the distribution is non-normal because the pupil constricts in a logarithmic

fashion, which means that the pupil only spends a small amount of time in its fully dilated
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state.

5.5.2 CNN Results

Figure 5.10: The accuracy results for the sequential network architecture. (top-left) The
CDF of the pupil center prediction error. (top-right) The CDF of the pupil diameter
prediction error. (bottom) Bland-Altmann plots showing the residuals of the pupil
diameter predictions split across the different iris colors: blue, brown, and mixed from
left to right. The black lines indicate one standard deviation from the mean.

The cumulative distribution functions (CDFs) at the top of Figure 5.10 show the

distribution of the absolute errors for the sequential network architecture. The thick

dashed line in both plots compares the results to a baseline that assumes the mean

predictions for all users; this is not meant to serve as a comparable algorithm, but rather
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ground the results relative to some other estimator. Improvement over the baseline

demonstrates that the networks are learning more than just the mean value.

The top-left of Figure 5.10 shows the CDF for the errors of the first network, which

estimates the pupil center for a cropped input video frame. Across all users, the

distribution of Euclidean errors has a median of 0.43 mm and a 90th percentile of

0.87 mm. The error distributions across the different iris colors are nearly identical. The

magnitude of the error can partly be attributed to the pre-processing of the video frame.

Input images are downsampled by a factor of 4, which reduces the resolution of the

pupil center estimation to 0.31 mm. Despite the loss of resolution, the errors are well

within the diameter of the iris (10-12 mm). In fact, most are within the smallest observed

pupil diameters (∼2 mm). Although it is ideal for the pupil to be centered in the image

that is input to the second network, the most important result is that the eye always

remains in the region of interest that is cropped around the center prediction. By jittering

the training data, the second network is trained to handle shifted images.

The top-right of Figure 5.10 shows a similar CDF plot for the errors of the second

network, which estimates the pupil diameter given an image cropped using the pupil

center output by the first network. Across all users, the distribution of absolute errors has

a median of 0.36 mm and a 90th percentile of 1.09 mm. According to Meeker et al. [165],

the error of PupilScreen’s diameter estimation is better than that of manual examination

(0.5 mm), but worse than that of a clinical pupillometer (0.23 mm). To determine if the

error of the first network leads to greater errors in the second network, I examined the

accuracy of the second network given input images cropped around the ground truth

pupil center. I found that there was little difference between using the predicted pupil

centers and the ground truth pupil centers (50th: 0.36 mm, 90th: 1.19 mm vs. 50th: 0.36 mm,

90th: 1.15 mm). The fact that using the ground truth centers did not improve the accuracy

of the pupil diameter estimation may be a byproduct of the fact that the training data was

jittered, leading the network to be invariant to exact pupil location.

The Bland-Altmann plots in the bottom half of Figure 5.10 show a different
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representation of the diameter prediction errors split across the different iris colors. In all

cases, the sequential network architecture tends to overestimate the pupil diameter. If

the CNN relies upon convolutional filters that look for edges, overestimation could be

happening because those filters are more likely to respond to regions outside of the

pupil’s actual boundary. The mean pupil diameter errors are +0.24 mm, +0.27 mm, and

+0.07 mm for blue, brown, and mixed eyes, respectively. I find that the most extreme

outliers belong to a small subset of participants who had particularly dark irises. I

believe that this error can be reduced with more training data from participants with

similarly dark irises.

Figure 5.11 shows the same performance measures for the fully convolutional

architecture. The CDFs at the top of the figure show that the fully convolutional network

was generally more accurate than using sequential networks. Across all users, the

distribution of Euclidean errors for the pupil center has a median of 0.20 mm and a 90th

percentile of 0.50 mm. The distribution of absolute errors for the pupil diameter has a

median of 0.30 mm, which is closer to the observed accuracy of a clinical pupillometer

than the 0.36 mm median error of the sequential network architecture. Examining the

Bland-Altmann plots in Figure 5.11, I find that the fully convolutional architecture tends

to underestimate the pupil diameter. The mean pupil diameter errors are -0.11 mm,

-0.20 mm, and -0.55 mm for blue, brown, and mixed eyes, respectively. Beyond the

inherent differences between the two architectures from a deep learning standpoint, one

reason for the improved results could be the fact that explicit morphological operations

could be performed on the pixel labels; rather than hoping that the network could learn

some attribute in regards to smooth edges, it is easier exercise domain-knowledge and

enforce such rules afterwards. The post-processing could also explain why this

architecture underestimated diameters; although smoothing can remove protrusions

from a jagged pupil boundary estimate, it can also shrink an otherwise correct, smooth

pupil boundary estimate.

There is a noticeable difference between the results for different iris colors. For both
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Figure 5.11: The accuracy results for the fully convolutional architecture. (top-left) The
CDF of the pupil center prediction error. (top-right) The CDF of the pupil diameter
prediction error. (bottom) Bland-Altmann plots showing the residuals of the pupil
diameter predictions split across the different iris colors: blue, brown, and mixed from
left to right. The black lines indicate one standard deviation from the mean.

architectures, images of brown eyes led to the worst results. The sequential network

architecture had a median error of 0.41 mm and a 90th percentile error of 1.19 mm, and

the fully convolutional architecture had a median error of 0.33 mm and a 90th percentile

error of 1.14 mm. This may be because the boundary between the pupil and the iris is less

noticeable for people with darker irises, so the convolutional filters in the networks are

less likely to respond to the appropriate regions of the eye. I also hypothesize that this is

the reason for why the measured diameter error for brown eyes does not correlate with
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the pupil size as it does with the lighter iris colors, a phenomenon noted by Meeker et al.

when pupils were manually examined.

5.5.3 Metric Evaluation

The outputs of PupilScreen’s networks are irrelevant unless they are combined

sequentially in PLR curves. For the sake of brevity, the results from here on out come

from the fully convolutional architecture since it was slightly more accurate. To quantify

how well the predicted PLR curves track the human-labeled PLR curves, their

normalized cross-correlation was calculated. The average normalized cross-correlation

across all videos is 0.91. Figure 5.12 compares several examples of PLR curves produced

by PupilScreen with ground truth PLR curves from manual annotations.

Figure 5.12: Examples of predicted and ground truth PLR curves. (left) An example
where PupilScreen accurately estimates all PLR metrics. (center) An example where
PupilScreen accurately estimates the max constriction velocity, but underestimates the
constriction amplitude and percentage. (right) An example where PupilScreen accurately
estimates the constriction amplitude and max constriction velocity, but underestimates
the constriction percentage.

Table 5.2 describes how well PupilScreen is able to predict PLR metrics relative to
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Table 5.2: PLR metric evaluation

CONSTRICTION AMPLITUDE - mm

Ground truth range 0.32-6.02

Mean absolute error 0.62

Standard deviation of absolute error 0.72

CONSTRICTION PERCENTAGE - %

Ground truth range 6.21-62.00

Mean absolute error 6.43

Standard deviation of absolute error 6.74

MAX CONSTRICTION VELOCITY - mm/s

Ground truth range 1.37-8.99

Mean absolute error 1.78

Standard deviation of absolute error 0.67
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those measured from the manually labeled dataset. Table 5.2 also shows the range of

those metrics across all participants as a point of comparison for the error magnitude.

PupilScreen can track constriction amplitude with a mean error of 0.62 mm, constriction

percentage within a mean error of 6.43%, and max constriction velocity with a mean error

of 1.78 mm/s. As a point of comparison from the literature, an evaluation of PupilWare

by Rafiqi et al. [203] demonstrated that their system tracked constriction and dilation

percentages with an accuracy such that 90% of their predictions fell within 10% of the

ground truth. However, there are many differences between PupilWare and PupilScreen

that make these results difficult to compare. PupilScreen was evaluated on many more

participants than PupilWare (42 vs. 9), but the evaluation of PupilWare aggregated a time

series of percent change values rather than the single summary statistic like PupilScreen.

The two systems are also intended for different applications. PupilWare is designed to

track changes in pupil size attributed to varying cognitive load, which tend to be smaller

in amplitude than the changes induced in PupilScreen.

Examining the predicted PLR curves further provides insight into the nature of these

errors. The center and right plots in Figure 5.12 show cases where a repeated error across

frames led to the the inaccurate estimation of some PLR metrics, but not others. In the

center, PupilScreen correctly tracks the pupil diameter during constriction, but then

overestimates the final diameter of the pupil after constriction. The max constriction

velocity is correctly estimated in these situations, but the constriction amplitude and

percentage are not. On the right, PupilScreen follows the ground truth PLR curve with a

roughly constant offset. This means that although the absolute estimate of the pupil

diameter may be off, the change between the minimum and maximum pupil remains

unchanged. This behavior only affects the constriction percentage since it relies on an

absolute baseline; the constriction velocity and amplitude remain unaffected. Although

not shown in Figure 5.12, errors in all three metrics can also be attributed to pupil

diameter predictions that deviated from nearby frames in a manner that failed

PupilScreen’s outlier criteria but were significant enough to create a deflection in the
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filtered PLR curve.

5.5.4 Preliminary Clinical Evaluation

To gauge PupilScreen’s diagnostic efficacy, I supplemented my dataset with videos from

six patients at Harborview Medical Center’s trauma ward and neuro-intensive care unit

(neuro-ICU). These individuals had sustained significant head trauma, but were stable

enough at the time to be recruited for the study. Their doctors and nurses knew

beforehand that they had non-reactive pupils. Non-reactive pupils are frequently

observed in patients whose condition is unstable, making it difficult to use my research

prototype without interfering with the clinician’s workflow. As before, three videos were

recorded for each patient; however, there were complications in collecting these videos,

including the inability of the patients to keep their eyes open and the inability of the

clinician to maintain the position of the box while recording the videos. Because of these

issues, only 24 of the 36 possible PLR curves (3 videos per patient × 2 eyes per patient ×

6 patients) were suitable for analysis.

To evaluate PupilScreen’s accuracy on non-reactive pupils, I randomly selected one

of the folds created during my initial training and analysis. The patient videos were

processed using the CNNs that were trained on that fold’s training data to produce

pathologic PLR curves. An equal number of healthy PLR curves were generated using

randomly selected videos from that fold’s test set. Using the same network for both sets

of videos guaranteed that the PLR curves were generated from networks that were

trained on the same data. Figure 5.13 shows examples of both responsive and

non-responsive pupils that were collected with PupilScreen. The PLR curves from

healthy individuals have a noticeable exponential decay, whereas the PLR curves from

the patients do not.

The PLR curves were anonymized, shuffled, and then sent to two clinicians familiar

with pupillometery. The clinicians were asked to classify the PLRs as either “responsive”
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Figure 5.13: A subset of (left) responsive and (right) non-responsive PLR curves that were
shown to clinicians for my preliminary clinical evaluation.

or “non-responsive”. They were not told how many curves would be in each category, nor

were they shown the video recordings themselves. The first clinician was able to correctly

classify every curve in my dataset. The second clinician misclassified one non-responsive

PLR curve as responsive. In that particular case, PupilScreen estimated that the person’s

pupil constricted in a slow and almost linear manner, but by a significant amplitude. The

second clinician also misclassified one responsive PLR curve as non-responsive, again,

due to the borderline pupil constriction amplitude.

5.5.5 Clinician Feedback

Throughout my design process, I asked clinicians about their personal experiences with

pupillometry and for feedback on PupilScreen’s design. These clinicians included

surgeons, nurses, and other personnel at the Harborview Medical Center’s neuro-ICU.

Although PupilScreen is proposed as a tool to be used by team doctors and parents,
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clinicians who work with TBI are far more familiar with existing pupillometry methods

and their tradeoffs and could provide far more insight beyond novelty.

One of the surprising findings early on was that although the clinicians were familiar

with the purpose of a pupillometer and its advantages over a penlight test, the

pupillometer was hardly used in the clinical setting. The pupillometer was mainly used

to track changes in PLR over a long period of time to identify worsening injuries as

quickly as possible in otherwise unresponsive patients. For diagnosis or triage, penlights

are strongly preferred for their simplicity and ease of access, despite the limited precision

and lack of consistency they afford. As one clinician stated, “If whatever you ask an EMT

to do adds twenty seconds or so, it’s not worth it”. In fact, I found that some clinicians

use their smartphone’s flash instead of a penlight, validating aspects of my idea.

When I asked the clinicians about the prospect of PupilScreen’s convenience, they

were excited by the idea of a smartphone app that would be in their pockets at all times.

Unsurprisingly, clinicians pointed out that the PupilScreen box was still a bulky object

that needed to be carried to conduct the test, although some reasoned that it would be

far cheaper to place multiple boxes in the neuro-ICU than multiple pupillometers. One

clinician recommended a foldable box that would be easier to transport. Another

clinician suggested a monocular design that would record one eye at a time; such a

system would still require a separate component from the phone, but it would be

roughly half the size of the PupilScreen box. The most popular suggestion was a system

where no box was required at all. Eliminating the box would make PupilScreen even

more convenient than a penlight, but removing the box eliminates control over lighting,

which is crucial for ensuring that the pupil is visible and that the light stimulus provided

to the eyes is standardized. Nonetheless, I plan on exploring this possibility in the future

and address this potential in Section 5.7.

Another issue raised about PupilScreen’s design is the difficulty of using PupilScreen

on patients who are unconscious. In the sports-related concussion scenario, the cases that

most warrant the use of pupillometry are when the patients are conscious and can comply
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with most verbal instructions. In the neuro-ICU, penlights and pupillometers are often

used on unconscious patients, and clinicians must hold those patients’ eyelids open with

one hand in order to expose the pupil(s). This is a manageable, but clumsy maneuver

to conduct with the PupilScreen box. Manipulating the patient’s face in this manner can

also allow extra light to seep in from the top of the box, which reduces the control over

the lighting within it.

From my interviews, I believe that PupilScreen’s design will be suitable for use by

team doctors and parents, but requires further improvement for use by EMTs and other

hospital clinicians.

5.6 Discussion

My goal was to develop a system that could quantitatively assess the severity of TBIs by

measuring a person’s pupillary light reflex. Furthermore, I imposed the requirements

that the system should be automated and easy to deploy. I believe that PupilScreen is the

first step toward these goals. The PupilScreen box allows anyone to use their phone as

an inexpensive pupillometer. It does so by blocking out ambient lighting while allowing

the smartphone to provide its own light stimulus from the flash. Using two sequential

CNNs, PupilScreen measures the pupil center with a median error of 0.43 mm and the

pupil diameter with a median error of 0.36 mm. Using a fully convolutional network,

PupilScreen achieves median errors of 0.20 mm and 0.30 mm for those same two

measures, respectively. Once I found that PupilScreen could track the PLR with

reasonable accuracy, I conducted a preliminary clinical trial with six patients who had

suffered a TBI. When clinicians were given PLR curves from both healthy and injured

individuals, they were almost always able to reach the correct diagnosis.
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5.6.1 Hardware

The low-fidelity nature of the PupilScreen box has advantages and disadvantages. The

only requirements on the box were that it needed to block out light from the

environment and that it allowed the smartphone’s flash to illuminate the patient’s eyes.

A variety of materials for the box could have satisfied these requirements. I 3D-printed

the box using PLA plastic for durability over the course of the study. The PupilScreen

box could easily be mass-produced using injection molding for similar results. Since the

box does not require any embedded electronics outside of the user’s smartphone, people

can even construct their own PupilScreen box using stiff cardboard. This last idea is

particularly enticing because it could allow for the generalization of our system

throughout the diverse smartphone ecosystem. The PupilScreen box used in the study

was made specifically with iPhones in mind since they have a more unified design. Later

models (iPhone 4 or after) have both the camera and flash on the top-left corner at the

back of the phone, which lent itself to the design shown in Figure 5.4. Android phones

come in all sorts of different configurations and shapes, which would require a

dedicated box design for each model or a configurable box to cover all of them.

Beyond the design of the PupilScreen box, the diverse smartphone ecosystem could

influence the diagnostic efficacy of PupilScreen, although I believe these effects would be

minimal. Different smartphone models may have different flash LEDs, but most are

bright enough to cause a similarly significant PLR. PupilScreen could tune its thresholds

for various PLR metrics based on information about the flash LED that can be stored in a

lookup table. There is larger variation in smartphone cameras across specifications,

including sensitivity and resolution. Cameras can respond to various wavelengths of

light in different ways. I believe this should have minimal impact on PupilScreen’s

CNN-based approach since the convolutional filters should still respond in a similar

manner if preprocessing or calibration can be employed to standardize input frames.

With regards to camera resolution, a higher resolution translates to a higher
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pixel-per-mm ratio given a fixed camera placement and focus. A higher pixel-per-mm

ratio allows PupilScreen to detect smaller changes in pupil diameter and measure the

PLR with increased precision. In cases when the resolution is too low, PupilScreen could

incorporate a zooming procedure that maximizes the pixel-per-mm ratio without

sacrificing focus. However, too much variability in resolution could lead to issues since

the filters in PupilScreen’s CNNs have fixed pixel sizes and may be trained to only

recognize contours within certain scales.

By relinquishing lighting control to the smartphone, the current PupilScreen design

is limited in what kind of responses it can capture. In our evaluation, I only examined

pupil constriction, not dilation. This is because there is no intermediate lighting state

between the on and off stages of the smartphone’s flash, and when the flash is off, the

camera cannot see the patient’s eyes. Some smartphone models are beginning to provide

multiple flash LEDs (e.g., iPhone 6), but I found there was not enough of a difference

between them to induce significant pupil diameter changes. Early in our design phase, I

briefly experimented with using the smartphone’s screen as the lighting source. I decided

against this design because most smartphone screens are not sufficiently bright to make

the eyes visible within the PupilScreen box. Furthermore, since most front-facing cameras

are on the corner of the smartphone, the screen illuminates the patient’s face at an angle

when the camera is centered between their eyes. This can form a light gradient across the

patient’s face, or worse, a shadow on an eye, creating undesirable noise in the data.

5.6.2 Software

One might argue that I did not collect enough data to sufficiently train the networks’

thousands of parameters. I attempted to mitigate some of these issues by jittering our

data during training and starting with a pre-trained network in the case of the fully

convolutional architecture; however, I recognize that more data is always better. Beyond

collecting more data in the same manner as I have in the past, I plan to incorporate
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synthetic datasets, such as SynthesEyes by Wood et al. [260], to develop a more diverse

dataset. I may also explore ways of scraping the web for images to further bolster our

dataset.

There is more exploration left to be done concerning the optimal CNN architecture

for identifying the pupil. One drawback from using CNNs on individual video frames in

general is that consecutive frames are treated independently until predictions are

combined for the PLR curve. This approach does not account for the fact that the pupil

changes size continuously and, therefore, nearby frames should have correlated pupil

diameters. PupilScreen uses low-pass filtering to reduce unnecessary variation between

nearby frames. Another way to account for frame continuity would have been to use an

algorithm that trains on entire sequences, such as a continuous-time recurrent neural

network. I chose not to do this because it requires a significant number of examples for

both reactive and non-reactive pupils, which would only be feasible with a larger

deployment. There is also the possibility that such an approach could bias towards

learning the typical PLR, leading to diagnostic false negatives. Although using two

sequential CNNs led to slightly worse results, the full range of possible structures for

those networks was not explored. As pointed out by Chellappa [36], factors related to

network size (e.g., memory footprint, number of parameters, training time) are still an

open challenge in the deep learning community. Staying up to date with advancements

in that field while focusing on the our specific task will be important for eventually

moving PupilScreen to a configuration that does not require a server.

Most of our participants complied with PupilScreen’s procedure, meaning that they

blinked as little as possible and kept their gaze toward the camera. These constraints are

also imposed by pupillometers; if the patient does not comply, the pupillometer rejects

the trial and requests a retest. Both pupillometers and PupilScreen currently handle

blinking in different ways that lead to similar results. Pupillometers explicitly localize

the pupil using infrared light. If they cannot find the pupil, the PLR curve for those

frames has a null value. As long are there are not too many null values in the PLR curve,
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the pupillometer interpolates the pupil diameter for those frames. PupilScreen does not

include an explicit blinking detection step, so all frames are tested through the CNNs

regardless of the whether the pupil is visible in them or not. That being said, the CNNs

are only trained on images where the pupil is visible, so cases when the pupil is not

visible lead to outlier results that are handled through the post-processing described in

Section 5.4.4. I found that cases of blinking were not a significant source of error in

PupilScreen’s results, but a blink detector [170] could be incorporated at the beginning of

PupilScreen’s pipeline so that irrelevant frames are accounted for sooner.

Handling different gaze directions is a simpler matter for both PupilScreen and

pupillometers. Pupillometers fit an ellipse, not a circle, to the pupil. If the ellipse’s

eccentricity is too low (e.g., its axes are uneven), the frame is rejected just as a frame with

a blink. The data for PupilScreen was also originally labeled as ellipses. The elliptical

labels were converted to a circular representation where the diameter was defined as the

average of the ellipse’s axes, so the CNNs are trained to interpret the ellipses in that

manner. The maximum of the ellipse’s axes could have been a better summary of the

pupil since the dimension parallel to the direction of the rotation decreases in size;

however, I chose to use the mean as a compromise between this phenomenon and the

fact that some pupils have small protrusions along their perimeter that artificially extend

their clinically significant boundary.

5.6.3 Future Applications

PupilScreen is primarily targeted toward individuals interested in assessing the severity

of head trauma, whether it be a high school coach checking for concussions or an EMT

checking the extent of a more general TBI. Zafar and Suarez [264] note that most of the

studies involving the diagnostic significance of pupillometry are limited due to small

sample sizes. The clinical study I conducted has the same issue since it only included six

individuals who had suffered significant head trauma. I was limited to individuals who
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were in a stable condition because clinicians were hesitant of introducing yet another

instrument into their workflow during time-critical situations. Following their

suggestions, I plan to explore the possibility of removing the PupilScreen box. Rather

than imagining PupilScreen as an inexpensive pupillometer, removing the box would

turn PupilScreen into a more quantitative penlight exam, sacrificing consistency and

standardization in favor of convenience. Ensuring that the penlight exam is conducted

in a reasonable manner would become the responsibility of the user interface. Visual

guides could show an inexperienced user how close the phone should be from the

patient’s face, and feedback could be provided if the pupils were not sufficiently

stimulated by the light.

I believe that by making pupillometry more accessible in this manner, I can enable

researchers to reassess previous studies with greater sample sizes. In fact, I plan to

conduct a follow-up study looking at the correlation between PupilScreen, a

clinical-grade pupillometer, and the tools currently used by American football teams for

assessing concussions (e.g.,the King-Devick test and the SCAT). I also plan on examining

how our technique can be used to check for other eye-related conditions that may

indicate a TBI, such as involuntary eye movement [145] and poor visual tracking

performance [158, 159].

5.7 PupilScreen v2.0

My research team and I engaged in conversations with clinical partners to determine the

steps that would be needed to deploy PupilScreen in a larger scale study with more cases

of TBI. We found that doctors and nurses were reluctant to introduce our prototype into

clinics because of the reasons listed in Section 5.5.5. The lack of portability and

ease-of-use far outweighed the repeatability and precision that the PupilScreen box

enables. Given those issues, I am now working on the next version of PupilScreen that

only requires a smartphone. Whereas PupilScreen with a box can be considered an

inexpensive alternative to a clinical pupillometer, PupilScreen without a box would be
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considered a more precise penlight exam. The version of PupilScreen without the box

will be used in a study in Phitsanulok, Thailand where my clinical collaborators will be

able to recruit emergency room patients who have suffered from TBIs. Below, I describe

the challenges that must be overcome in order to make PupilScreen without the box

reliable and the steps I have either taken so far or plan to take in the future to address

those challenges.

5.7.1 Challenge #1: Varying Ambient Light

The PLR is not only a function of a person’s cognition and ocular motor functions but

also light intensity. The PupilScreen box controls the light intensity that is shone on

patients’ eyes to remove that degree of freedom. PLR metric thresholds are easier to set

in that case for distinguishing normal and abnormal responses since the ideal response

would look roughly similar in the same lighting environment. Without the box,

however, varied ambient lighting introduces an additional parameter that must be

considered when classifying PLR curves.

There are two approaches I plan on comparing to address this challenge, both of

which involve measuring the amount of ambient light using newer smartphones’ light

sensor. The first takes advantage of prior work by Pamplona et al. [188], which presents

a mathematical model for pupil size as a function of light intensity. The algorithm would

generate an expected curve shape for the given lighting environment to set dynamic

classification thresholds. The second approach is more data-driven. The light

measurements would be combined with the observed PLR metrics as features in a

machine learning classifier for separating normal and abnormal responses.

Despite the fact that ambient lighting complicates classification, it also provides an

additional measurement opportunity. PupilScreen with the box is limited to only

measuring pupil constriction; pupil dilation is impossible to measure because there is

not a way of reducing the light stimulus without making it pitch-black inside the box.



116

Without the box, however, there is sometimes sufficient ambient lighting to see dilation

as well. Although we cannot guarantee sufficient lighting to see the pupils in all cases,

we plan on exploring dilation in the future.

5.7.2 Challenge #2: Varying Phone Position

The PupilScreen box fixes the position of the smartphone relative to the user’s face, which

serves two purposes. First, the box ensures that the smartphone is as close as possible to

the user’s face to increase the resolution of the pupils while keeping both pupils within the

camera’s view. Second, the mapping from pixels to millimeters remains constant because

the scale of objects in the camera’s view does not change during the PupilScreen test.

Without the box, there is nothing to constrain the position of the smartphone relative

to the patient’s face. One small user interface change I added to help in this regard was

adding visual guides on the smartphone’s screen where the patient’s eyes should land

within the camera frame. The separation between the guides is based on the average

interpupillary distance for humans (62.9 mm) [89]. Even with the guides, we found

during pilot testing that both users and patients were prone to moving while the camera

was recording. To further address this issue, I have implemented an eye detection

module that automatically finds the eyes, crops them out, and feeds those images to the

fully convolutional neural network for segmentation. The eye detection module relies on

Haar feature-based cascade classification [247] to produce candidate bounding boxes for

the eyes within each video frame. When extra candidate boxes are produced, the

algorithm eliminates erroneous boxes by leveraging the facts that there should only be

one eye in each half of the image and they should occur at roughly the same height. If a

candidate box is only produced on one side, the algorithm extrapolates the position of

the opposite box using horizontal symmetry. If no candidate boxes are found, the

algorithm assumes that the positions of the eyes are within the guides provided on the

screen. The eye detection algorithm is improved by the fact that concurrent frames



117

should have the patient’s eyes at roughly the same position. A majority vote is used to

resolve conflicts in case an eye’s bounding box jumps from one frame to another.

Cropping directly around the eyes provides an additional benefit for the neural network

training. The original PupilScreen algorithm assumes a broad region-of-interest to

ensure that the eyes were always fed into the network; this led to larger input images,

and thus a larger network. Using eye detection reduces the size of the input images by a

factor of almost ×1/2.

Even after automatically cropping the eyes in the frame, there is another challenge

introduced by having a shifting camera. If the initial PupilScreen algorithm were to

segment the pupil throughout a video and see the pupil shrink from frame-to-frame,

there would be two possible explanations: (1) the pupil constricted or (2) the camera

moved away from the patient. Innovations in augmented reality like ARKit3 have made

it possible to measure objects in 3D space while the camera is moving. I considered

leveraging ARKit to measure the pupils in millimeters regardless of the smartphone’s

position. However, informal testing revealed that ARKit does not have the

millimeter-level precision needed to accurately report the PLR.

Instead, the new algorithm takes advantage of the fact that the pupils are surrounded

by irises that have constant size. The new fully convolutional network is trained to

segment both the iris and the pupil simultaneously. The diameter of the iris is measured

horizontally since the top and bottom of the iris are occluded by the eyelids, while the

diameter of the pupil is measured as before. Rather than reporting the diameter of the

pupil in millimeters, the algorithm reports the pupil diameter as a fraction of the iris’

diameter. One limitation of this approach is that it complicates comparisons between

PupilScreen and existing literature that measures the pupil in millimeters; nevertheless, I

feel that it is necessary to take this approach for PupilScreen to be practical.

3https://developer.apple.com/arkit/
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5.7.3 Preliminary Results

Figure 5.14: Examples of the segmentation results generated using the current version of
PupilScreen.

Figure 5.14 shows some preliminary segmentation results using the updated

PupilScreen algorithm, including automatic eye detection and segmentation of both the

iris and pupil. These eye images were extracted from videos collected in Thailand as part

of the training orientation given to nurses who will be conducting our study. Note that

these eyes have brown irises, which are the most challenging for pupil detection

algorithms. The neural network was trained using annotated frames from 20 videos in

uncontrolled lighting environments. This is not nearly enough data to cover the variety

of eye colors and shapes that one would expect; however, it was enough to give insight

into some preliminary results.

The top row of Figure 5.14 illustrates a case when the algorithm was able to identify

both the pupil and the iris. In both the ground truth and predicted images, the iris
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segments have roughly the same shape, but the estimated pupil region is only a subset of

the actual pupil region. Nevertheless, the pupil-to-iris ratios are similar between the

ground truth annotation (31%) and the predicted segmentation (37%). The bottom row

of Figure 5.14 illustrates a case when the algorithm was able to identify the iris with

moderate accuracy, but unable to identify the pupil at all. Closer examination reveals

that the image in that case has a corneal reflection, thereby obscuring the border between

the pupil and the eye.

As with all data-driven models, the results will be improved with more training data.

The 20 videos we used to train our model are simply not enough to cover the diversity

of eye appearances we expect to see in the future. However, another step I will take to

improve PupilScreen’s robustness is to build a responsive, real-time system that alerts the

user if the segmentation algorithm cannot properly see the pupil. If that is the case, the

smartphone app would guide the user to either direct the camera at a slightly different

angle or to reorient the patient if possible.
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Chapter 6

CHALLENGES IN REALIZING SMARTPHONE-BASED HEALTH
SENSING

Given my past experience with prototyping smartphone-based health sensing apps,

I have come to realize that we are far from seeing them deployed in the real world. In

this chapter, I present a list of challenges in bringing smartphone-based health sensing to

fruition in today’s medical and technological infrastructure.

6.1 Challenge #1: Limitations Fundamental to Smartphones

Most smartphone sensors are primarily focused on improving the user experience. IMUs

measure the smartphone’s orientation to determine how content should be presented,

microphones record audio for communication, and cameras allow users to capture images

and videos of their favorite moments. Because these user experiences are currently the

primary driving force behind smartphone sales, sensor specifications do not exceed what

is necessary to support them.

For example, CMOS image sensors used for smartphone cameras are sensitive to

visible and near infrared wavelengths (400-1000 nm). However, most smartphone

manufacturers place a thin film on top of the sensor to block infrared light, limiting the

spectrum to 400-700 nm to ensure that photographs are visually correct. This design

decision for common photography use-cases is counterproductive to specific use-cases

like HemaApp that could benefit from an extended light spectrum. The design of the

flash LED also poses challenges for both HemaApp and BiliScreen. The LED is intended

for flash photography and torch lighting, so it is designed to produce intense light. For

BiliScreen, that intensity can cause discomfort to someone who stares directly at the
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light. The flash LED and camera also get hot if they are left on for too long, which can

cause discomfort while using HemaApp.

6.1.1 Current Approaches

Although the IR blocking film presents difficulties for HemaApp, some IR light can still

leak to the camera if enough is shone. The initial study of HemaApp exploited this fact

by utilizing a custom IR and visible light LED array with an incandescent light bulb to

augment the smartphone’s limited spectral range. The study revealed that incorporating

the extra LEDs improved the rank order correlation coefficient between HemaApp’s

estimates and the corresponding blood draw result from 0.69 to 0.82 when compared to

only using the built-in white LED. The use of custom lighting is less attractive than being

able to use what already exists on smartphones. Conveniently, newer models have an IR

time-of-flight autofocus sensor positioned right next to the rear camera. The current

Android API does not provide access to the raw data, but rather the end result of an

algorithm that estimates distance. This data can be accessed through a custom kernel

installation.

Fortunately, smartphone operating systems have begun to give low-level access to

some sensors. In the context of HemaApp, standard white-balancing algorithms often

suppresses blue and green channel fluctuation because the red channel fluctuation from

the blood is so dominant. The Camera 2 API for Android allows for control over such

gains, which HemaApp leverages for consistent variation across the color channels.

Smartphone operating systems have also begun to provide access to raw image files,

which are useful for apps like BiliCam and BiliScreen that require the truest

representation of color directly from the camera sensor.
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6.1.2 Future Directions

A smartphone operating system that offers more control over sensors and other

smartphone components can accelerate exploration at the intersection of health and

mobile sensing, especially when developers have access to raw sensor data. For

example, the IR time-of-flight sensor can be used as a pulse sensor if an API exposes raw

sensor values, avoiding the need for custom kernel solutions that cannot be widely

deployed.

A loftier goal would be for smartphone manufacturers and researchers to come

together and agree upon a concise set of sensors that together form a “dedicated health

sensor”. My approach to health sensing has been to push the limits of sensors that

already exist on smartphones, yet history has shown that manufacturers are willing to

support new sensors if their use has enough value proposition. Apple’s M-series

coprocessors offload the collection of accelerometer and gyroscope data from the main

CPU for gesture recognition even when the smartphone is asleep, and dedicated depth

sensors are beginning to appear on newer smartphones for augmented reality

applications. Demonstrating the utility of new sensors often requires working with

dedicated hardware and then identifying the minimum requirements needed to support

the application. This approach can also uncover signals that may not have been

discovered otherwise by limiting research to smartphone sensors.

6.2 Challenge #2: Smartphone Heterogeneity

HCI and ubiquitous computing researchers often cite the fact that smartphones are

pervasive, but this statement only applies to the general category of smartphones; not all

smartphones are created equal. There are multiple smartphone manufacturers (e.g.,

Samsung, Apple, Motorola) and software operating systems (e.g., Android, iOS), which

lead to a diverse smartphone ecosystem. This poses challenges when someone wants to

receive FDA approval for an app that relies on the built-in sensors of whichever
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smartphone model they happened to use for prototyping. The FDA has spent years

devising regulations about dedicated medical devices ranging from MRI machines to

blood glucose monitors—–devices that are assumed to be static and self-contained,

performing only their prescribed function with a fixed hardware and software

specification.

The studies presented in this article were conducted using a single smartphone

model to avoid cross-device biases. Attaining FDA approval for those apps would

require further studies with many different smartphone configurations. Camera-based

apps like HemaApp or BiliScreen, for example, would have to work for a number of

different camera modules, LEDs, and sensor arrangements. The flow detected by the

microphone in SpiroSmart relies on the mechanical transduction of sound, which is

affected by the position of the microphone and the physical casing surrounding it. If

generalizability is not possible, developers must restrict potential users to a subset of

devices or convince manufacturers to fulfill specific hardware and software

requirements to support their app.

Figure 6.1: To account for different lighting conditions and camera sensors, both (left)
BiliCam and (right) BiliScreen incorporate paper accessories with colored squares that
can be used as calibration references.
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6.2.1 Current Approaches

In BiliCam and BiliScreen, smartphone diversity is handled by performing a check on

the camera’s properties during data collection. Both apps include paper accessories for

color calibration: a square card for BiliCam and glasses for BiliScreen (Figure 6.1). These

accessories are inspired by a Macbeth ColorChecker, a professional tool for post-hoc color

balancing. If an accessory’s colored squares appear different from what was expected,

whether due to ambient lighting or the camera’s sensitivity to various wavelengths, then

the same artefact is likely affecting the appearance of the skin. A calibration matrix that

corrects the discrepancy can be applied to the rest of the image to standardize colors

across images.

6.2.2 Future Directions

Requiring an accessory for standardization adds another potential point of failure that

must be FDA-approved. If the BiliCam card’s colors fade over time while the card is kept

in a person’s wallet, the app’s performance worsens. The card must also be printed with

the same ink and paper used to train the algorithm. In the end, a seemingly trivial

addition requires so much consideration that people would probably not be allowed to

print the card themselves. Although I posit that such accessories would be far less

expensive than a dedicated device, requiring an extra component limits deployability.

Another solution is to create transfer functions based on sensor specifications. When

a complete transfer function cannot be generated between sensors, such as two

microphones with different sampling rates, compensation mechanisms can be

introduced to cater to the common denominator. For developers to find detailed

information on a particular sensor, they must currently either disassemble the

smartphone and look up the sensor’s part number online or dig through the software’s

kernel and hope the information is documented. Having part numbers accessible in a

centralized database or API would help developers understand the capabilities of the
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sensors at their disposal and account for the diversity in the market. At the minimum,

this would allow developers to restrict their app’s use to compatible models or software

states.

6.3 Challenge #3: Quality Control of Data Collection Procedures

Clinical tests are conducted under the supervision of a trained professional. With

spirometers, for example, pulmonologists can ensure that their patients use the

mouthpiece properly by placing their lips around the tube rather than within it.

Pulmonologists can also coach patients on how to properly perform the breathing

maneuver so that a spirometer can properly measure their peak and total lung function.

Going from using a spirometer in a clinic to using SpiroSmart at home removes that

safety blanket of quality control. If a user does not push their lungs to the limit while

using SpiroSmart, they can be left with nonsensical results that are not representative of

their health. Environmental factors are also more controlled in clinical settings.

Traditional spirometers are accurate because they measure flow directly and their

mouthpieces block out ambient noise. For SpiroSmart, however, the microphone picks

up all the sound that occurs during the measurement, adding unexpected noise to the

data.

Enforcing quality control is not only important for the immediate results that people

receive, but also for algorithm development. The more assumptions that can be made

about the signal, the easier it is for a researcher to design a signal processing pipeline or a

machine learning algorithm that arrives at an accurate model. Data collection with many

edge cases leads to outliers that either impede system accuracy or need to be handled

explicitly.
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Figure 6.2: (left) As a person pushes more air out of their lungs, the ball in the SpiroSmart
visualization rises to the top and encourages to the user to continue the maneuver. (right)
The SpiroSmart vortex whistle can be used to control the diameter of the user’s mouth,
acting as a flow-to-pitch transducer.

6.3.1 Current Approaches

Automatic checks can be implemented to assess the ambient environment before data

collection. For example, the BiliCam and BiliScreen apps check that there are no

significant shadows or glare spots obstructing the color references. Real-time

visualizations can also be made to coach users on how to improve data quality. The

SpiroSmart app includes a dynamic visualization that reacts to the flow rate sensed by

the microphone in order to encourage users to exhale as much air out of their lungs as

possible (Figure 6.2, left).

When environmental factors or physical abilities impede a person’s ability to comply

with data collection, inexpensive accessories can improve the process. One of the

observations from the first SpiroSmart deployment was that people with severely

impaired lung function sometimes struggled to keep their mouths wide open as they

performed the breathing maneuver. To help those people, a 3D-printable vortex whistle

was developed to hold a person’s mouth open like the mouthpiece does for a spirometer
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(Figure 6.2, right). The vortex whistle has an extra useful property: the faster the flow of

air that enters it, the higher the pitch that leaves it. In other words, the vortex whistle

acts as a flow-to-pitch transducer that simplifies the sensing problem.

6.3.2 Future Directions

Another way quality control can be integrated into an app is by adding a classifier that

decides whether or not data is “valid” before it goes to the main analysis component.

In the case of spirometry, researchers had already categorized the mistakes made during

spirometry maneuvers (e.g., coughing during the test, pursing lips while blowing) [17].

Work has been done to train a machine learning algorithm that identifies these errors for

spirometer maneuvers in order to provide users with targeted feedback so that they can

improve their technique [149]. This approach is currently being expanded to SpiroSmart,

as well.

6.4 Challenge #4: Data Interpretation for Untrained Users

The acceleration of hypochondria due to information available on the Internet, also

known as cyberchondria [255], is likely to be exacerbated by ubiquitous medical testing.

Using BiliScreen as a worst-case scenario, users could interpret a positive test result as a

pancreatic cancer diagnosis. However, not everyone with an elevated bilirubin has

pancreatic cancer, and not everyone with pancreatic cancer has an elevated bilirubin.

Even if users can internalize this subtlety, false positives and false negatives have

significant repercussions, whether it be undue stress or a missed diagnosis.

Doctors receive years of training on how to apply Bayesian reasoning when

accounting for a test result in the diagnostic process. This procedure requires calculating

the patient’s pre-test probability of having the condition and then updating that

probability according to the accuracy and result of the test. Calculating the prior

probability requires knowing the prevalence of the condition and the specific risk factors
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that may increase a person’s likelihood of having the condition, such as family history

and environmental factors. Updating to a post-test probability given a positive test result

entails calculating the positive predictive value (PPV) of a test–—how often people with

a positive test result actually have the medical condition. Calculating PPV requires

knowing the test’s sensitivity (SNS), the test’s specificity (SPC), and the prevalence of the

condition (P0):

PPV =
SNS × P0

SNS × P0 + (1− SPC)× (1− P0)
(6.1)

This calculation does not always lead to intuitive results. A test with a sensitivity and

specificity of 80% for a disease that occurs in 15% of the population will have a PPV of

41.3%. A similar test for a disease that occurs in 5% of the population will have a PPV of

only 17.4%. In both cases, the test performs worse than random chance despite having a

seemingly decent accuracy.

Test results are never black-and-white; all models have uncertainty bounds that

complicate decisions. For example, the current state of BiliScreen has a mean error of

-0.09 ± 2.76 mg/dl. This is reasonable for a disease management scenario when a

person’s bilirubin may vary between 5-20 mg/dl. For a diagnostic scenario, where the

threshold for concern is around 1.3 mg/dl, it is debatable whether or not a test result of 2

mg/dl should be considered elevated.

6.4.1 Future Directions

If smartphone-based health sensing apps are going to be freely distributed to the general

public rather than prescribed and supervised by trained physicians, the routine of

estimating a post-test probability should be as automated as possible. Apps should be

able to calculate a pre-test probability by collecting risk factor information. Family

history and demographic data can be explicitly recorded through digital forms. Sensors

can also be used to infer risk factors. As an example, GPS data could reveal that a person

is at a higher risk of a lung condition because of poor local air quality.
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The weighing scale provides an interesting study of how important the presentation

of results can be to the decision-making process. All scales have uncertainty, yet people

tend to fixate on the number they see. Weight is also a function of how much the person

is wearing and how much they ate and drank before the measurement. Kay et al. found

that people often forget these factors, leading to stress over negligible weight

changes [119]. One scale design they suggest graphically emulates a traditional analog

scale with exaggerated needle movement to reflect uncertainty. Kay et al. also propose

an “always-on” scale design that accounts for daily variance and incorporates

information through low burden question prompts so that measurements can be

automatically adjusted closer to their true value. Researchers in the machine learning

community have actually trained models that learn how different clinical measurements

vary over time to help clinicians identify high-risk patients [16, 217]. The same models

could be used to help users extrapolate reasonable trends in their data if they feel the

need to do so.
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Chapter 7

A SURVEY INSTRUMENT FOR EVALUATING EARLY-STAGE
UBIQUITOUS HEALTH SENSING TECHNOLOGIES

Early-stage research for a new ubiquitous health-screening technology often focuses

on a subset of technology features, namely sensing accuracy or interface design. However,

other factors become equally important to how a person perceives a technology. As a

researcher wants to translate their technology from research into practice, they might ask

questions like:

• How can the interface design and instructions make end-users confident that they

will be able to conduct data collection properly?

• What kinds of results should be shown to end-users?

• Should positive and negative results be presented differently?

• How much technical information about the technology should be available to end-

users, if any at all?

• Would providing specific information about the target medical condition sway end-

users’ decision-making?

Exhaustively implementing and evaluating all possible combinations of features to

answer such questions can be a burdensome process, especially when it is done through

a functional prototype. Evaluation methods like paper prototyping aim to reduce

engineering effort for gathering feedback, yet some of a technology’s credibility can be

lost if the prototype is not sufficiently refined; awkward interface interactions and
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hand-drawn sketches can distract end-users, causing them to react differently with such

a prototype than they would with a final technology.

As a step towards addressing Challenge #4 in Section 6.4, I contribute a survey

instrument that can be used by researchers who intend to translate a ubiquitous

health-screening technology into practice. I define ubiquitous health-screening technologies

as tools that support end-user decision-making in regards to seeking or ignoring

treatment. My survey gauges two intertwined outcomes: (1) people’s willingness to use

the technology (i.e., its acceptability), and (2) how the technology might affect people’s

decision-making (i.e., its effectiveness). Giving a ubiquitous health-screening technology

to individuals who do not have a sophisticated knowledge of proper diagnostic

decision-making can lead to undesirable outcomes. Falsely leading a person to believe

they have a health issue can lead to unnecessary stress, while falsely leading them to

believe they do not have a health issue can inhibit timely treatment.

I use the Health Belief Model (HBM) [102, 109] to provide a common language with

which UbiComp and HCI researchers can evaluate and examine potential ubiquitous

health-screening technologies. The survey itself presents respondents with a

hypothetical scenario regarding their health and probes constructs under the HBM. The

survey then introduces a hypothetical health-screening technology that claims to screen

for the target medical condition and asks the respondent how the technology would

change their answers, if at all. Researchers can modify features of their technology in

screenshots or text descriptions within the survey instrument rather than building

multiple versions of a prototype, lessening the required engineering burden relative to

pilot testing. The results of the survey are analyzed using structural equation modeling

(SEM) to determine the importance of manipulated variables.

To demonstrate how my survey instrument can be used, I focus specifically on

health-screening applications (apps) that use the built-in sensors on smartphones (e.g.,

accelerometer, camera, microphone) to measure a symptom. I used a formative study

with 96 online respondents to select scenarios and apps that were both believable and
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distinct from one another. I then deployed my survey instrument to 263 online

respondents, varying the types of scenarios and the classification accuracy of the apps

they were shown. After using SEM to verify that responses aligned with my expectations

from the HBM, I used SEM again to uncover interactions with my manipulated

variables. I expected to find that respondents would be more willing to use sensor-based

health-screening apps with higher reported accuracy, and my data confirmed that fact.

However, increased accuracy did not always lead to an increased likelihood in changing

a person’s course of action. When respondents were shown positive test results for a

serious medical condition, they were more willing to take health-promoting actions

regardless of the apps’ reported accuracy. When respondents were shown negative test

results for common or socially stigmatizing medical conditions, they were less willing to

take health-promoting actions regardless of the apps’ reported accuracy.

My research contributes:

1. A survey instrument that can be used to evaluate the perception of a ubiquitous

health-screening technology at the early stages of its development (Chapter A),

2. A confirmatory analysis of responses from 263 online participants demonstrating

that my survey instrument aligns with expectations based on the HBM, and

3. An exploratory analysis of the same responses that uncovers the potential effects

that the medical condition in question and an app’s classification accuracy can have

on acceptability and effectiveness.

I conclude by discussing opportunities for researchers to use and extend my

instrument in future research to better understand people’s perception of ubiquitous

health-screening technologies.
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Table 7.1: The constructs of the HBM and their definitions.

HBM Construct Definition

Perceived Seriousness
A person’s subjective assessment of the severity of the health

problem and its potential consequences

Perceived Susceptibility
A person’s subjective assessment of their risk of developing

the health problem

Perceived Benefits
A person’s subjective assessment of the value in taking a

certain action

Perceived Barriers
A person’s subjective assessment of the obstacles to taking a

certain action

Modifying Variables
Individual characteristics (demographic, psychosocial) that

can impact a person’s perception of a health problem

Self-Efficacy
A person’s subjective assessment of their ability successfully

perform a behavior

Cues to Action Internal or external triggers that prompt a certain action

7.1 Related Work

I use the HBM as the theoretical foundation of my survey instrument. I therefore describe

the HBM in detail below. I then discuss methodologies for the support of health-related

decision-making and for evaluating the perception of sensor-based technology.

7.1.1 The Health Belief Model

The Health Belief Model (HBM) was first developed in the 1950s by a group of social

psychologists at the US Public Health Service to explain the failure of tuberculosis

screening programs [102, 109]. Table 7.1 lists the definitions of the HBM’s constructs, and

Figure 7.1 shows how they are related. The HBM posits that a person will undergo an
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Modifying Factors:
  Age, Sex, Ethnicity
  Personality
  Socio-economics
  Knowledge

Likelihood of Engaging 
in Health-Promoting
Behavior

Perceived Susceptibility

Self-Efficacy

Perceived Seriousness

Perceived Barriers

Cues to Action:
  Education
  Symptoms
  Media Information

Perceived Benefits

Figure 7.1: The Health Belief Model

.

action to improve or maintain their health if the perceived seriousness and perceived

susceptibility of the health problem (together known as the perceived threat) combined

with the perceived benefits of the action outweigh the perceived barriers to that action.

All of these constructs are affected by modifying variables—demographic information

that can influence a person’s decisions. For instance, someone who is well-educated may

understand the benefits of early screening, and a person who is wealthy may not view

the cost of a screening exam as a burden. Decisions are made when there is at least one

cue to action. The cue can be internal (e.g., discomfort, fear due to family history) or

external (e.g., appointment reminder, advertisement).

The HBM was originally intended for one-time actions like screening exams.

However, it has also been applied to actions that require adherence, such as diet

modification or smoking cessation. In addition to the initial barriers that may impede a

person’s ability to take such actions, the person must also believe in their own ability to

successfully maintain the behavior; for this reason, self-efficacy was later added to the
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HBM [210].

Past studies in medicine and psychology have applied the HBM in various health

contexts. For example, Wagner et al. [249] used the HBM to explore the perception of

vaccines in China. They found that caregivers were more likely to get their children

vaccinated for measles than pneumonia due in part to the higher perceived benefits of

receiving the measles vaccine. Champion [34] used the HBM to investigate the factors

that influence the frequency of breast self-examination. She found that lower perceived

barriers, higher perceived susceptibility, and higher familiarity with breast cancer were

all correlated with more frequent breast self-examination; she also found that women

who received instruction from their doctor or nurse tested themselves more frequently.

My survey instrument provides a standardized platform with which researchers can

conduct investigations like these to determine what factors play a role in how people

perceive and react to health-screening technologies.

Of course, the HBM is not without criticism. Taylor et al. [230] and Azjen [2] both

argue that the HBM is specifically framed around health, but frameworks like the theory

of planned behavior (TPB) [69] and the transtheoretical model (TTM) [199] can be

applied to other behavioral domains. Having been more broadly utilized, more

generalizable evidence has been generated to support the TPB and the TTM.

Nevertheless, I am comfortable using the HBM because my focus is strictly on

health-related outcomes. Another criticism of the HBM is that it has many constructs

with inconsistent definitions, leading to weaker predictive power [230, 7, 97]. Such

criticism calls for an instrument that standardizes the assessment of HBM constructs for

a broad, yet defined category of interventions in order to generate greater confidence in

their specification. My survey aims to fill that gap by providing such an instrument for

ubiquitous health-screening technologies.
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7.1.2 Evaluating Health-Related Decision-Making Support Technologies

To the best of my knowledge, there has not been prior commentary on evaluation

methods for health-related decision-making technologies, but there has been such

commentary in the related field of behavior change. Behavior change aims to change a

person’s habits to prevent disease, whereas decision-making support focuses on the

similar goal of getting a person to take a single health-promoting action (e.g., going to

the doctor, stopping drinking coffee). Klasnja et al. [123] provide a thorough

meta-analysis on different evaluation approaches for health behavior change, including

interviews, field studies, and randomized control trials. They come to the conclusion

that system evaluations should be tailored to their specific intervention strategies (e.g.,

self-monitoring, conditioning, tunneling [72]). Although Klasnja et al.’s commentary

concentrates on evaluation strategies for after a technology is ready to be deployed to

end-users, their call for additional evaluation strategies motivates my survey instrument

for early-stage technologies.

Hekler et al. [100] urge HCI researchers to utilize and contribute to behavioral science

theories. In particular, Hekler et al. call for the development of new strategies for

investigating design recommendations that balance abstraction with contextual

relevance. They note that many design guidelines for behavior change technologies are

often tied to assumptions about the specific technology that was studied, leading to

findings that are less generalizable than intended.

One way to provide abstraction is through vignettes: brief, carefully written

situations that include a subset of key features to simulate a real-world scenario [3, 9].

My survey instrument uses hypothetical scenarios and technology descriptions to probe

people’s decision-making; however, I am not the first to do so. Evans et al. [65] and

Bachmann et al. [10] both provide systematic reviews on this field of research. Two of the

prominent vignette-based methods they describe are conjoint analysis [92] and judgment

analysis [95, 44]. In conjoint analysis, participants are asked to rank or select among
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different versions of an object with slight variations across a feature set. As more of these

decisions are made, the influence of each feature on the participant choices can be

elicited. As an example of health-related conjoint analysis, Ryan [216] used conjoint

analysis to examine the values that are important to people pursuing in vitro

fertilization. In judgment analysis, participants are asked to decide whether they would

take action in a series of scenarios with different features. Participant decisions are

compared to the optimal decisions according to an oracle, producing correlations

between the weighting of the features in both cases. As an example of health-related

judgment analysis, Kee et al. [120] used the method for evaluating prioritization

decisions within a dialysis program.

My work diverges from existing vignette-based methods in several ways. First, my

survey instrument not only elicits preferences between different feature combinations,

but also examines how those features influence people’s health-related decision-making.

Second, I do not assume that an optimal decision exists for my hypothetical scenarios.

The fact that a person may change their course of action at all is an interesting result that

I believe should be studied further.

7.2 Survey Instrument Design

My survey instrument elicits measurements of HBM constructs for hypothetical scenarios

involving ubiquitous health-screening technologies. I describe the structure of the survey

instrument in this section. An abridged version of the survey instrument itself, used for

the analysis I conduct in Section 7.5, can be found in Chapter A. For the rest of this paper,

I focus on sensor-based health-screening apps as a specific instantiation of ubiquitous

health-screening technology to illustrate a particular use of my survey instrument. Note

that italicized terms in the following sections designate variables that are examined in the

analysis.
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End of Survey
Consent
Exclusion criteria

Baseline HBM measures

Present the intervetion 
scenario, information, or 
media as needed

Repeat HBM measures 
as needed

Demographic
Pre-Intervention Intervention Post-Intervention

Repeat for multiple 
interventions

Figure 7.2: The organization of my survey instrument.

7.2.1 Design

The progression of my survey instrument is illustrated in Figure 7.2. My survey starts by

asking the respondent about their familiarity with the medical condition they will read

about in the survey and with the hardware platform associated the associated

hypothetical ubiquitous health-screening technology. Because my survey demonstration

involves sensor-based health-screening apps, I ask about the respondent’s familiarity

with smartphones.

Respondents are then presented with a hypothetical scenario where they are asked to

consider that they may have been afflicted with a medical condition. This prompt serves

as the cue to action. For example, a scenario about a sinus infection could be presented

as follows:

A number of your friends have recently stayed home sick with a sinus infection.

You have started to have a “stuffed-up” nose and pain in your sinuses as well. After

looking up information online, you now suspect that you might be developing a sinus

infection.

After reading the scenario, the respondent is asked to complete an instructional

manipulation check [183] that involves selecting symptoms that are associated with the
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Table 7.2: The set of questions used to probe the HBM constructs.

HBM Construct Survey Question

Perceived Seriousness

If you had [[medical condition]] in this scenario,

how impactful do you believe it would be on

your long-term health?

If you had [[medical condition]] in this scenario,

how impactful do you believe it would be on

your finances?

If you had [[medical condition]] in this scenario,

how impactful do you believe it would be

socially and/or professionally?

Perceived Susceptibility
How likely do you think you are to have

[[medical condition]] in this scenario?

Perceived Benefits

How beneficial do you believe each of these

actions would be towards helping you recover

from your symptoms?

Perceived Barriers

How easy do you think it would be for you to

take each of the following actions to help you

recover from your symptoms?

described medical condition. Besides checking that the respondent actually read the

scenario, the instructional manipulation check forces the respondent to spend extra time

reflecting on the scenario.

The respondent is then asked to answer a series of questions related to their general

perception of the scenario. The questions probe PerceivedSeriousness, PerceivedBenefits, and

PerceivedBarriers (Table 7.2). PerceivedSeriousness is broken into three questions because a

person may be concerned about how a medical condition impacts different aspects of
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their life: their health, finances, and social standing. PerceivedBenefits and PerceivedBarriers

each correspond to a single question, but are asked for various potential actions. All of

the responses are recorded along a 7-point scale.

On the next page, the respondent is asked about their PerceivedSusceptibility to the

medical condition, which is recording along a 7-point scale. The respondent is also asked

whether or not they would take various actions as a series of yes-or-no questions—a

variable I call ActionTaken. The actions can vary depending on the target medical

condition, but can include options like scheduling an appointment with a doctor or

searching for information online. The respondent is allowed to take none of actions or

multiple actions, if they so choose.

After a respondent has reported which actions they would take, they are informed

about a sensor-based health-screening app that claims to detect the target medical

condition. The text includes a high-level description of what symptom the app is

detecting, how the app conducts the measurement, and the source of the app itself.

Continuing with the sinus infection example (note that the respondent’s phone company

is automatically filled in using data from the survey instrument’s screening

questionnaire),

A smartphone app named SinusCheck analyzes the sound your nose makes as you

inhale to determine whether or not it is congested due to a sinus infection. To use

the app, you are asked to inhale through your nose close to the smartphone’s built-in

microphone. The app guides you through the recording process so that it can hear the

sound properly.

SinusCheck comes with your smartphone by default as part of a new mobile

health initiative by [[Phone Company]]. SinusCheck provides text-based and

audio-based instructions to help you perform the test. The app also checks that the

test was performed correctly. You can repeat the test until the app determines the
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image to be “valid”. The results of the test are available instantly.

After reading the app description, the respondent is asked whether or not they would

use the app on a 7-point scale of AppInterest. If the respondent says that they would use

the app beyond the neutral score, they are taken to two new pages that ask the

respondent how they would react to “normal” and “abnormal” test results. For clarity,

the remainder of this paper refers to “normal” as a positive test result and “abnormal” as

a negative test result; however, I showed the former in the survey instrument because

test results are never definitive. The order between the two test results is randomized. I

posit PerceivedSeriousness is only dependent on a person’s perception of a medical

condition and should not change because of a test result. Similarly, PerceivedBenefits and

PerceivedBarriers are appraised characteristics of the actions and also should not change

because of a test result. Therefore, when asking the respondent to react to the test results,

I only repeat the questions related to PerceivedSusceptibility and ActionTaken.

Given the respondent’s projected course of action before and after test results, I can

generate outcome variables for each action that describe whether or not the app would

have changed the respondent’s plan. ActionChangePositive is true whenever the

respondent would not have taken an action before a positive test result and would have

taken an action after it, false whenever the respondent would not have taken an action

before or after the positive test result, and undefined otherwise. Inversely,

ActionChangeNegative is true whenever the respondent would have taken an action

before a negative test result but would not have taken an action after it, false whenever

the respondent would have taken an action before and after the negative test result, and

undefined otherwise.

At the end of the survey instrument, the respondent is asked for information related

to ModifyingVariables within the HBM (Table 7.3). The demographic ModifyingVariables

capture aspects of the respondent’s background and living circumstances. The
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Table 7.3: Modifying Variables.

Modifying Variable Type Survey Question

Demographic

Gender

Age

Race/Ethnicity

Marital status

Children

Country of residence

Education

Estimated household income

Smartphone-Specific

Opinion of smartphone vs. clinical test

regarding time to results

Opinion of smartphone price vs. clinical test

regarding price

Opinion of smartphone vs. clinical test

regarding privacy

Smartphone brand

Years with smartphone

Experience-Specific

Familiarity with the medical condition

Number of statistics courses

Frequency of statistics usage

Numeracy

smartphone-specific ModifyingVariables probe the respondent’s experience with

smartphones. The questions asking for the respondent’s opinion of smartphones versus

clinical tests are answered on a 7-point scale. The experience-based ModifyingVariables
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measure the respondent’s perceived knowledge of the various skills that are required to

interpret a diagnostic test result rationally, including statistics and familiarity with the

condition. To measure statistical experience, the respondent is asked how many statistics

courses they have taken, how often they use statistics, and the Berlin Numeracy

Test [40]—a word problem that challenges a person’s ability to reason about numbers.

Note that familiarity with the medical condition is probed at the beginning of the survey,

which is necessary because the respondent is told about the condition’s symptoms

within the survey itself.

7.2.2 Summary

To summarize, responses to each of the HBM constructs are recorded along a 7-point

scale. PerceivedSeriousness, PerceivedBenefits, and PerceivedBarriers are recorded once,

before the app is described. PerceivedSusceptibility is recorded three times: before the app

is described, after a positive test result, and after a negative test result. Four outcome

variables are recorded throughout the survey instrument: (1) AppInterest, the likelihood

that the respondent would use the app along a 7-point scale; (2) ActionTaken, whether or

not the respondent would take action as yes-no responses; (3) ActionChangePositive,

whether a person who was not going to take action would change their mind based on a

positive test result; and (4) ActionChangeNegative, whether a person who was going to

take action would change their mind based on a negative test result. The latter three

variables are recorded per action.

7.3 Research Questions

In this work, I use my survey instrument for both confirmatory and exploratory

investigations. I enumerate the questions behind these investigations below.
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7.3.1 Confirmatory

RQ.1 Does my survey instrument follow the expectations of the HBM for a person’s

likelihood of using a sensor-based health-screening app?

RQ.2 Does my survey instrument follow the expectations of the HBM for a person’s

intended course of action?

According to the HBM, higher PerceivedSeriousness, PerceivedSusceptibility, and

PerceivedBenefits should increase a person’s likelihood of taking health-promoting

actions, and higher PerceivedBarriers should decrease a person’s likelihood of taking

action. My survey instrument needs a firm theoretical base in order to examine how

manipulated variables affect respondent decision-making. Therefore, my confirmatory

investigation is needed to support my expectations of the HBM.

7.3.2 Exploratory

RQ.3 Does (a) the target medical condition, (b) the app’s sensitivity, and (c) the app’s

specificity affect a person’s likelihood of using a sensor-based health-screening app?

RQ.4 Can the result of a sensor-based health-screening app change a person’s intended

course of action? If so, how is that affected by (a) the target medical condition, (b)

the app’s sensitivity, and (c) the app’s specificity?

I manipulate three variables in my exploration. The first is the target medical

condition. The HBM dictates that medical conditions with increased PerceivedSeriousness

are more likely to result in a person taking health-promoting action. A person’s

likelihood of taking action should also be increased by a positive test result, seeing as

how it serves as a cue to action according to the HBM. However, it is unclear how the

two constructs interact with one another. The second and third variables I manipulate

relate to the accuracy of the sensor-based health-screening app. People will always
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prefer classifiers with higher accuracy, but people internalize a trade-off between false

positives and false negatives that varies from scenario to scenario [118]. Thus, I break

down accuracy into sensitivity (i.e., the percentage of sick people who are correctly

identified as having the condition) and specificity (i.e., the percentage of healthy people

who are correctly identified as not having the condition).

7.4 Scenario and App Selection

Before I could explore the aforementioned research questions, I first needed to create

prompts for health-related scenarios and corresponding sensor-based health-screening

apps that would be sufficiently believable and distinct from one another. I selected these

prompts using an abridged version of my survey instrument, which I describe below.

7.4.1 Participants

I recruited survey participants through Facebook, Reddit, and a mailing list within the

Institute of Translational Health Sciences (ITHS), a center sponsored by the NIH’s

Clinical and Translational Science for connecting clinicians, patients, and other

communities throughout the northwest United States. Respondents who reported no

smartphone experience were excluded from participation. Respondents who completed

the survey were eligible for a raffle in which 1-in-20 people would win a $20 Amazon

gift card. In total, 96 respondents completed the survey from start to finish. A subset of

their demographic information is provided in Table 7.4.

7.4.2 Apparatus

To select my scenario and app prompts, I deployed an abridged version of my survey

instrument (Figure 7.3). Respondents were not asked about how they would react to

positive and negative test results. Instead, they were asked to rate the plausibility of the

scenario (ScenarioPlausibility) and the plausibility of the app (AppPlausibility) on a 7-point
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Table 7.4: Respondent demographics for the scenario and app selection survey.

Survey Demographics (N=96)

Source Facebook (56), ITHS (37), Reddit (3)

Gender
Male (26), Female (68), Transgender Male (1),

Gender Variant / Non-conforming (1)

Age
18-24 (42), 25-34 (38), 35-44 (8), 45-54 (4), 55-64 (3),

65+ (1)

Country of residence United States (93), India (2), United Kingdom (1)

Smartphone operating system iOS (60), Android (36)

Self-reported smartphone

experience

Expert/Advanced (60), Intermediate (34),

Novice/Beginner (2)

Consent & 
Exclusion 
Criteria

Familiarity with
Medical Condition

Scenario Description App Description Plausibility Measures
Scenario Plausibility
App Plausibility

Present 1 of 3 
medical condition

Demographics Conclusion

Pre-Intervention Intervention Post-Intervention End of Survey

Repeat for each level - 
Common, Stigmatized, and Serious

Figure 7.3: The structure of the survey given to respondents to select the most believable
scenarios and apps. The structure builds on my survey instrument (Figure 7.2), including
many different target medical conditions and excluding the notion of test results.

scale.

To create the scenario prompts and app prompts, I selected three categories of

medical conditions that I believed could elicit different reactions from people: Common

conditions, Serious conditions, and Stigmatizing conditions (Table 7.5). The categories are

neither meant to be comprehensive nor definitive, but merely a formalized effort

towards investigating different situations. Many conditions could have fallen within
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Table 7.5: The categories of medical conditions that were explored through the survey.

Category Characteristics
Medical

Conditions
App Inspiration

Common

Relatively

well-known; only

requires short-term

treatment; infectious

Sinus infection Chandra et al. [35]

Strep throat
Nall and

Charles [176]

Pink eye Bhadra et al. [19]

Serious

Possibly fatal;

requires long-term

treatment

Pancreatic cancer
Mariakakis

et al. [155]

Skin cancer
Wadhawan

et al. [248]

Anemia Wang et al. [252]

Stigmatizing

Could lead to

uncomfortable social

interactions if

discovered by

someone else

Halitosis
Seshan and

Shwetha [220]

Irritable bowel

syndrome

Lewis and

Heaton [140]

Psoriasis
Shrivastava

et al. [223]

these categories. I used two criteria that led to my final selections: (1) the condition had

to involve a symptom that a person could either recognize with their senses or perceive

within their body, and (2) the condition had to involve a symptom that could possibly be

detected with a sensor-based health-screening app using standard built-in smartphone

sensors. The apps corresponding to the conditions I selected did not exist, but most were

inspired by past publications in mobile health research.

There are also many possible health-promoting actions a person might take based on
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Table 7.6: The list of health-promoting actions that were proposed for each medical
condition category.

Action Common Serious Stigmatizing

Schedule an appointment with your

doctor/physician
3 3 3

Contact your doctor/physician for advice 3 3 3

Stay at home and avoid contact with other

people
3 7 3

Purchase over-the-counter medication 3 7 3

a health-screening app, but I restricted my studies to the four listed in Table 7.6. One

reason I selected these particular actions was because they can typically be taken within

the same day of receiving a test result. Not all actions make sense for all kinds of medical

conditions; for instance, there is no over-the-counter medication that can be purchased for

most Serious medical conditions. Therefore, not all actions were shown for each scenario.

Out of the 169 respondents who opened the survey, 96 completed it (56.8%), 51

partially completed it (30.2%), and 22 were disqualified because they did not own a

smartphone (13.0%). Ignoring the two cases when participants completed the survey a

day after starting it, the median survey completion time was 11.0 minutes. The average

completion time was 13.4 ± 10.9 minutes.

7.4.3 Design and Analysis

The survey was deployed in a 3×3 nested factorial design. The within-subject factor was

the different categories of medical conditions (ConditionType), while the across-subject

factor was the specific medical conditions within the categories (Condition). In other

words, each respondent was randomly shown one medical condition from each

category. The assignment of the conditions was counterbalanced, and the presentation
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order of the conditions in the survey was randomly shuffled. Responses from

respondents who failed the instructional manipulation checks were removed.

To determine the most representative medical conditions for each ConditionType, the

HBM construct ratings were compared within the same category using the Kruskal-Wallis

test [128]. This test was selected because ratings like Likert scores are generally treated

nonparameterically and each of the factors had more than two levels. When statistical

significance was found, post-hoc Mann-Whitney U tests [151] with the Bonferroni-Holm

correction [103] were used for pairwise comparisons. After the representative medical

conditions were selected, a similar analysis was performed to compare HBM construct

ratings across ConditionType to ensure that there was sufficient separation between them.

7.4.4 Results: Within ConditionType

Common Conditions

Statistically significant differences were found across the three Common conditions for

both ScenarioPlausibility (H(2) = 9.091, p < .05) and AppPlausibility (H(2) = 8.247, p < .05).

The sinus infection scenario was significantly less believable than the other two conditions

(p < .05 vs. both strep throat and pink eye). The pink eye app was significantly more

believable than the sinus infection app (p < .05). 100.0% of the respondents stated that

the pink eye scenario was at least slightly believable, and 70.0% of the respondents stated

that the pink eye app was at least slightly believable. Given these results, I selected pink

eye as my representative Common condition.

Serious Conditions

Statistically significant differences were found across the three Serious conditions for

both ScenarioPlausibility (H(2) = 15.264, p < .001) and AppPlausibility

(H(2) = 8.832, p < .05). The pancreatic cancer scenario was significantly less believable

than the other two conditions (p < .01 vs. both skin cancer and anemia). The skin cancer
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app was significantly more believable than the anemia app (p < .01). 93.3% of the

respondents stated that the skin cancer scenario was at least slightly believable, and

80.0% of the respondents stated that the skin cancer app was at least slightly believable.

Given these results, I selected skin cancer as my representative Serious condition.

Stigmatizing Conditions

A statistically significant difference was only found across the three Stigmatizing

conditions for AppPlausibility (H(2) = 6.420, p < .05). The psoriasis app was slightly

more believable than the IBS app (p = .06). However, there was a statistically significant

difference between the three Stigmatizing conditions regarding the impact they would

have on a person’s social life and professional standing (H(2) = 14.892, p < .01). In

particular, psoriasis was deemed significantly less impactful than the other two

conditions (p < .005 vs. both halitosis and IBS). Since halitosis was rated at least as high

as the other Stigmatizing conditions in terms of ScenarioPlausibility, AppPlausibility, and

PerceivedSeriousness, I selected halitosis as my representative Stigmatizing condition.

90.0% of the respondents stated that the halitosis scenario was at least slightly believable,

and 46.7% of the respondents stated that the halitosis app was at least slightly believable.

Although the latter number is low compared to the other condition categories, 26.7% of

the respondents stated that they found the halitosis app to be neither believable nor

unbelievable.

7.4.5 Results: Across ConditionType

Figure 7.4 shows the distribution of ScenarioPlausibility and AppPlausibility ratings for the

three selected medical conditions. No statistically significant difference was found across

the conditions for AppPlausibility (H(2) = 3.067, p = .21), but there was a statistically

significant difference for ScenarioPlausibility (H(2) = 9.068, p < .05). The scenario about

pink eye was significantly more believable than the scenario about halitosis (p < .01).
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Figure 7.4: The distribution of ratings for (left) ScenarioPlausibility and (right)
AppPlausibility.

Nevertheless, I were satisfied with the selected conditions since they all had high median

ScenarioPlausibility ratings.

Statistically significant differences were found across the three conditions for all of

the HBM constructs, including PerceivedSeriousness regarding long-term health

(H(2) = 47.352, p < .001), PerceivedSeriousness regarding finances

(H(2) = 49.162, p < .001), PerceivedSeriousness regarding social standing

(H(2) = 16.128, p < .001), and PerceivedSusceptibility (H(2) = 34.218, p < .001). There

were no statistically significant ordering effects for these tests.

My definition of a Serious medical condition suggests that skin cancer should have a

higher impact on a person’s long-term health and finances than the other two medical

conditions. The definition also suggests that people should believe that they are less

prone to having skin cancer than the other medical conditions. My results supported

both of these hypotheses. Skin cancer was rated as having a significantly higher

PerceivedSeriousness regarding long-term health (p < .001), higher PerceivedSeriousness

regarding finances (p < .001), and lower PerceivedSusceptibility (p < .001) compared to

pink eye and halitosis.

My definition of a Stigmatizing medical condition suggests that halitosis should have
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a higher impact on a person’s social life and professional standing than the other two

medical conditions. Halitosis was rated as having a significantly higher

PerceivedSeriousness on social standing than pink eye (p < .05); however, there was not a

significant difference between halitosis and skin cancer (p = .18). Nevertheless, the other

characteristics that were unique to skin cancer as a Serious condition provided enough

separation between them.

The combination of these results indicates that pink eye was viewed as having low

PerceivedSeriousness and high PerceivedSusceptibility. Therefore, pink eye was deemed

suitable as a Common condition.

7.5 Evaluation of Research Questions

With my scenarios and sensor-based health-screening apps selected, I were prepared to

deploy my survey instrument and investigate my research questions. In this section, I

describe the survey deployment, my use of structural equation modeling (SEM) for

analysis, and my findings.

7.5.1 Participants

This study was advertised through the same outlets as the previous study for scenario

and app selection. Respondents who reported no smartphone experience were excluded

from participation. Respondents who completed the survey were eligible for a raffle in

which 1-in-20 people would win a $20 Amazon gift card and 1-in-100 people would win

a $100 Amazon gift card. In total, 263 respondents completed the survey from start to

finish. A subset of their demographic information is provided in Table 7.7.

7.5.2 Apparatus

Figure 7.5 illustrates the structure of the survey that was shown to respondents. To

address my exploratory research questions, I varied the app description to include
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Table 7.7: Participant demographics for main evaluation

Survey Demographics (N=263)

Source Facebook (16), ITHS (240), Reddit (3), Other (4)

Gender

Male (45), Female (204), Transgender Male (5),

Gender Variant / Non-conforming (7), Self-Identify

(1), Undisclosed (1)

Age
18-24 (145), 25-34 (84), 35-44 (17), 45-54 (8), 55-64 (3),

65+ (3), Undisclosed (3)

Country of residence
United States (257), Belgium (1), Hong Kong (1),

Indonesia (1), Netherlands (1), Rwanda (1), Spain (1)

Smartphone operating system iOS (170), Android (93)

Self-reported smartphone

experience

Expert/Advanced (146), Intermediate (115),

Novice/Beginner (2)

Baseline 
HBM Measures

Repeat
HBM Measures

Consent & 
Exclusion 
Criteria

Familiarity with
Medical Condition

Scenario App Description

Sensitivity (65%, 80%, or 95%)

Specificity (65%, 80%, or 95%)

Present 1 of 9 combinations

Preference b/w Clinical vs. Mobile Testing
Statistical Competence

Demographics

3 medical conditions 
presented in random order

Pink Eye
Skin Cancer
Halitosis

Intervention 1Pre-Intervention Post-Intervention 1 Intervention 2 Post-Intervention 2

Screening Result

Normal (negative) Result
Abnormal (positive) Result

Randomize order

Only if likely 
to use the app

Conclusion

End of Survey

Repeat for each medical condition - 
Pink Eye, Halitosis, and Skin Cancer

Perceived Susceptibility
Action Taken

Repeat
HBM Measures
Perceived Susceptibility
Action Taken

Figure 7.5: The structure of the survey given to respondents to investigate my
confirmatory and exploratory research questions. The structure builds on my survey
instrument (Figure 7.2), including many different target medical conditions and the
sensing accuracy in the technology descriptions.
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Figure 7.6: An example of an icon array provided in the survey instrument to illustrate
the sensitivity and specificity of an app. This array illustrates 65% sensitivity and 80%
specificity.

sensitivity and specificity information for the sensor-based health-screening apps.

Sensitivity and specificity rates were presented with counts, rather than probabilities or

fractions, because prior work has found that the general public is more adept at

reasoning about counts [236]. The rates were also presented in graphical form using icon

arrays (Figure 7.6), again using counts for readability. An example of the additional text

is provided below:

Out of every 100 people who have a sinus infection, SinusCheck correctly told 65

people that they had a sinus infection. Out of every 100 people who do not have a

sinus infection, SinusCheck correctly told 80 people that they did not have a sinus

infection.

Out of the 361 respondents who opened the survey, 265 completed it (73.4%), 94
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partially completed it (26.0%), and 2 were disqualified because they did not own a

smartphone (0.6%). Ignoring the five cases when participants completed the survey a

day after starting it, the median survey completion time was 16.1 minutes. The average

completion time was 23.7 ± 29.0 minutes.

7.5.3 Design and Analysis

The survey instrument was used in a 3×3×3 mixed factorial design study. Each

respondent read all three scenarios that were selected from the previous study—pink eye

(Common), skin cancer (Serious), and halitosis (Stigmatizing)—making ConditionType a

within-subjects factor. The presentation order of the scenarios was counterbalanced

across all subjects. Three equally-spaced levels of sensitivity and specificity were

investigated—65%, 80%, and 95%—producing 9 possible combinations that described

the overall accuracy of the apps. Each app for each respondent was assigned one of

those 9 combinations at random, making Sensitivity and Specificity between-subjects

factors. Responses from respondents who failed the instructional manipulation checks

were removed.

The survey responses were analyzed using structural equation modeling (SEM) [110].

Prior work has used SEM and its variants to find evidence that supports the HBM

framework and the effectiveness of health-related interventions [28, 169]. SEM revolves

around a graphical model known as a path diagram. A path diagram describes

hypothesized causal relationships between variables. The nodes of the path diagram can

either represent single observable constructs or quantities that are not directly

observable, the latter of which are known as latent variables. The nodes are connected by

directed edges that describe the causal interactions. A series of regressions are

performed on a path diagram to generate a model where each edge is assigned a path

coefficient and p-value. The coefficient is not a correlation coefficient, but rather an

indication of how one variable influences another. For example, if the coefficient
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between A and B is 0.10, an increase in A by one standard deviation from its mean

would be expected to cause an increase in B by 0.10 of its own standard deviation from

its mean while holding all other factors constant. Chin [37] proposes that meaningful

path coefficients have an absolute magnitude greater than 0.20, though other guidelines

exist as well.

There are a number of fit statistics that researchers use to assess the overall quality

of a model, each with their own trade-offs and no generally agreed upon standard [124,

105, 172]. I use comparative fit index (CFI) as my main indicator of fit goodness. CFI

compares the fit of a target model to the fit of an independent model in which the variables

are assumed to be uncorrelated. CFI ranges between 0 and 1.00, where 1.00 is the best

result. As with path coefficients, there is little agreement on the recommended cut-off

that indicates an acceptable fit. As a point of reference, Hooper et al. [105] believe that a

CFI > 0.90 dictates a strong fit.

Figure 7.7 shows the complete path diagrams for each of the survey instrument’s

outcome variables. Since three questions were used to probe PerceivedSeriousness, those

responses are consolidated into a single latent variable. AppInterest is independent of the

action-specific HBM constructs—PerceivedBenefits and PerceivedBarriers—so they are

excluded its path diagram. The variables related to the app—Sensitivity, Specificity, and

smartphone-specific ModifyingVariables—are only connected to variables that can change

after the person is shown a test result: PerceivedSusceptibility, ActionTaken,

ActionChangePositive, and ActionChangeNegative. ConditionType and ActionType are used

as grouping variables and are thus not included in the path diagrams.

The analyses in this work were conducted using the R library lavaan [211]. Lavaan is

equipped to handle binary and ordinal variables, but not multi-level categorical variables

like race or gender; such variables were reformulated as binary dummy variables. I used

a robust variant of NLMINB [84] as my model estimator since my data included non-

continuous variables. For some of the analyses, the same model was fit across groups

(e.g., different actions or medical conditions) to answer the same question. This was done
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HBM core construct

Feature being tested

Modifying variables

Outcome variable
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(in Scenario)
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Action Taken
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Seriousness

Perceived 
Seriousness

App Interest

Perceived
Susceptibility

Perceived
Susceptibility

Perceived 
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Perceived 
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Perceived
Susceptibility

App Sensitivity

App Sensitivity
App Sensitivity

App Specificity

App Specificity
App Specificity

Demographic 
Modifying 
Variables
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Modifying 
Variables

Smartphone-
Specific 

Modifying 
Variables

Smartphone-
Specific 

Modifying 
Variables

Experience-
Specific 

Modifying 
Variables

Experience-
Specific 

Modifying 
Variables

Demographic 
Modifying 
Variables

Smartphone-
Specific 

Modifying 
Variables

Experience-
Specific 

Modifying 
Variables

(A)

(B) (C)

Figure 7.7: The complete path diagrams for the different analyses conducted in the study:
(a) AppInterest, (b) ActionTaken, and (c) ActionChangePositive/ActionChangeNegative

.

using an extension of SEM called multi-group SEM, where each group is assigned its own

path coefficients, but a single CFI is calculated across the entire model. By splitting the

data into groups, there were cases when certain factor levels disappeared; in those cases,
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Table 7.8: Path coefficients for the confirmatory analysis of AppInterest without
ModifyingVariables (CFI = 0.961).

AppInterest

∼Seriousness 0.132***

∼Susceptibility 0.057*
*p < .05, **p < .01, ***p < .001

the missing level was clustered with a nearby level across all groups.

Multi-group SEM and ModifyingVariables produced too many results to include in this

paper. I surface the most important results for the sake of brevity.

7.5.4 RQ.1: Confirmatory Analysis Results for AppInterest

The confirmatory analysis for RQ.1 was conducted on the AppInterest path diagram

(Figure 7.7a) across all levels of ConditionType without paths connected to the

manipulated variables—Sensitivity and Specificity. Table 7.8 shows the causal path

coefficients for the model fit without ModifyingVariables, which was strong compared to

baseline independent model (CFI = 0.961).

According to the HBM, I expected to see statistically significant positive coefficients

from PerceivedSeriousness and PerceivedSusceptibility to AppInterest. Significant positive

coefficients were found in both cases, although the coefficient from PerceivedSeriousness

was more than double that from PerceivedSusceptibility. The model with

ModifyingVariables was also strong compared to the baseline independent model (CFI =

0.959). However, a statistically significant coefficient was only found from

PerceivedSeriousness to AppInterest in that case

(PerceivedSeriousness → AppInterest = 0.114, p < .01). The lack of a significant effect from

PerceivedSusceptibility could be because the introduction of ModifyingVariables

incorporated many more degrees of freedom. Nevertheless, the fact that the effect from
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Table 7.9: Path coefficients for the confirmatory analysis of ActionTaken without
ModifyingVariables (CFI = 0.965).

Action Taken

(Schedule Appt)

Action Taken

(Contact Physician)

Action Taken

(Stay at Home)

Action Taken

(Purchase Meds)

∼Seriousness 0.161*** 0.203*** -0.05 0.156**

∼Susceptibility 0.361*** 0.345*** 0.207*** 0.235***

∼Benefits 0.224*** 0.14*** 0.248*** 0.318***

∼Barriers -0.076*** -0.046* -0.129*** -0.104
*p < .05, **p < .01, ***p < .001

PerceivedSeriousness was stronger and more significant than the effect from

PerceivedSusceptibility both with and without ModifyingVariables shows that people cared

more about the seriousness of a medical condition than their likelihood of getting getting

a medical condition when it came to AppInterest.

The model with ModifyingVariables had other relationships with statistically significant

coefficients. Respondents who were more familiar with the medical conditions were more

likely to believe that they posed a serious threat to their health, although the magnitude

of the effect was small (Familiarity → PerceivedSeriousness = 0.087, p < .01). Although

increased PerceivedSeriousness is not always desirable and could indicate hypochondria

in extreme cases, this result could show that respondents with more intimate knowledge

about the medical conditions took the repercussions of inaction more seriously.

7.5.5 RQ.2: Confirmatory Analysis Results for ActionTaken

Similar to RQ.1, the confirmatory analysis for RQ.2 was conducted on the ActionTaken

path diagram (Figure 7.7b) across all levels of ConditionType without paths connected to

the manipulated variables. Multi-group SEM was applied with ActionType as the group

variable to analyze each action separately. Table 7.9 shows the causal path coefficients
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for the model fit without ModifyingVariables, which was strong compared to the baseline

independent model (CFI = 0.965)

According to the HBM, I expected to see statistically significant positive coefficients

from PerceivedSeriousness, PerceivedSusceptibility, and PerceivedBenefits to ActionTaken. I

also expected to see a statistically significant negative coefficient from PerceivedBarriers to

ActionTaken. These hypotheses were all supported by the model fit. The same could be

said about the model with ModifyingVariables (CFI = 0.907). The lower CFI with the

inclusion of ModifyingVariables could be because multi-group SEM splits the data into

smaller subsets, thereby reducing statistical power while maintaining degrees of

freedom.

As before, the model with ModifyingVariables presented intriguing statistically

significant relationships. For example, respondents who were more familiar with the

conditions were more likely to consider health-promoting actions to be beneficial

(Familiarity→ PerceivedBenefits = 0.103, p < .001) and less likely to consider them difficult

(Familiarity → PerceivedBarriers = −0.089, p < .001); this was true for all actions except

“purchasing over-the-counter medication”. These results could show that respondents

who were more familiar with the medical conditions were more aware of the

repercussions of inaction, thus viewing those actions as easy to do and worth their time.

7.5.6 Summary of Confirmatory Analyses

For both AppInterest and ActionTaken, my results generally followed my expectations

according to the HBM. All of the path coefficients from the core HBM constructs to the

outcome variables had the sign that I expected them to have. With the exception of the

path coefficient between PerceivedSusceptibility and AppInterest, those coefficients were

also statistically significant. The magnitude of the path coefficients for the AppInterest

model did not exceed Chin’s recommended threshold of 0.2, but those for the

ActionTaken model did. Therefore, I had confidence to move forward and explore the rest
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Table 7.10: Path coefficients for the exploratory analysis of AppInterest (CFI = 0.997).

AppInterest

(Common)

AppInterest

(Serious)

AppInterest

(Stigmatizing)

∼Seriousness -0.120 0.101 0.129

∼Susceptibility 0.206** 0.120* 0.104

∼Sensitivity 0.416*** 0.357*** 0.268**

∼Specificity 0.461*** 0.300** 0.292***
*p < .05, **p < .01, ***p < .001

of my research questions.

7.5.7 RQ.3: Exploratory Analysis Results for AppInterest

The exploratory analysis for RQ.3 was conducted on the AppInterest path diagram

(Figure 7.7a) with the manipulated variables—Sensitivity and Specificity. Since the

ModifyingVariables added many degrees of freedom with few significant relationships,

they were excluded from these analyses. Multi-group SEM was applied with

ConditionType as the group variable to analyze the perception of each app separately.

Table 7.10 shows the causal path coefficients for the model fit. The model produced a

very strong fit against the baseline independent model (CFI = 0.997).

The path coefficients from Sensitivity and Specificity to AppInterest were sizable and

positive across all levels of ConditionType, confirming that increased accuracy made the

sensor-based health-screening apps more attractive. In fact, the effect was so strong that

those coefficients were much more statistically significant than those from the core HBM

constructs. This suggests that when a person is presented with the opportunity to use a

sensor-based health-screening app, they may be willing to use it regardless of their health

condition as long as they know that the app is accurate.

When examining the different levels of ConditionType individually, accuracy was most
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valued for the Common condition, then the Serious condition, and then the Stigmatizing

condition. Specificity was preferred over Sensitivity for the Common and Stigmatizing

condition, while Sensitivity was preferred over Specificity for the Serious condition. In

some sense, this finding demonstrates that respondents had an inherent knowledge

about the notion of prevalence and how it relates to the diagnostic decision making

process. The Common and Stigmatizing conditions are fairly prevalent, so prioritizing

Specificity indicates that respondents wanted to use an app’s test result to “rule out”

having the condition. The Serious condition is less prevalent, so prioritizing Sensitivity

indicates that respondents wanted to “rule in” having the condition.

7.5.8 RQ.4: Exploratory Analysis Results for ActionTaken

The exploratory analysis for RQ.4 was conducted on the ActionChangePositive and

ActionChangeNegative path diagrams (Figure 7.7c) with the manipulated variables and

without the ModifyingVariables. Multi-group SEM was applied with the combination of

ConditionType and ActionType as the group variables, producing 10 model fits (4 actions

for Common + 2 actions for Serious + 4 actions for Stigmatizing). Separate analyses were

conducted for positive and negative test results.

Positive Test Results

Table 7.11 shows the path coefficients for ActionChangePositive. Across all combinations

of ConditionType and ActionType, there were 1,074 cases when respondents said that they

would not take an action before using the app. Of those 1,074 cases, 417 (38.8%) changed

their mind after receiving a positive test result. The number of action changes was

roughly evenly distributed across the three levels of ConditionType. The model produced

a strong fit against the baseline independent model (CFI = 0.959).

Across all scenarios, there was a large, positive coefficient between AppResult and

ActionChangePositive. This result was expected since respondents had to see a test result
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Table 7.11: Path coefficients for the exploratory analysis of ActionChangePositive,
specifically for “scheduling an appointment” (CFI = 0.959).

Common Serious Stigmatizing

Action

Change

Suscept-

ibility

Action

Change

Suscept-

ibility

Action

Change

Suscept-

ibility

∼Seriousness 0.129 -0.297 0.192

∼Susceptibility 0.426** 0.508*** 0.474***

∼Benefits 0.226** 0.273 0.055

∼Barriers -0.137 -0.061 0.038

∼AppResult 6.962*** 0.398* 6.524*** 1.516*** 5.902*** 0.471**

∼Sensitivity -0.263 0.283** -0.009 0.01 -0.004 0.083

∼Specificity -0.185 0.093 -0.204 -0.107 0.033 -0.032
*p < .05, **p < .01, ***p < .001

in order to change their opinion on ActionTaken. There was also a strong positive

coefficient between AppResult and PerceivedSusceptibility across all scenarios, which

verified my intuition that a positive test result should increase a person’s perceived

likelihood of having a medical condition. However, the magnitude and significance of

that coefficient varied across the different medical conditions. The coefficient from

AppResult to PerceivedSusceptibility for the Serious medical condition was three times as

large and more significant than the corresponding coefficients for the other medical

conditions. Again, this result hints at the fact that respondents were willing to use the

positive test result from an app related to “rule in” having a Serious condition.

Specificity corresponds to a test’s true negative rate and is thus more directly linked to

negative test results, but Specificity does impact how a positive test result should be

interpreted according to Bayesian statistics. Nevertheless, Specificity did not have a

statistically significant effect on either ActionChangePositive or PerceivedSusceptibility.
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Table 7.12: Path coefficients for the exploratory analysis of ActionChangeNegative,
specifically for “scheduling an appointment” (CFI = 0.949).

Common Serious Stigmatizing

Action

Change

Suscept-

ibility

Action

Change

Suscept-

ibility

Action

Change

Suscept-

ibility

∼Seriousness -0.451* -0.182 0.169

∼Susceptibility -0.311** -0.358*** -0.212

∼Benefits 0.001 0.125 -0.196

∼Barriers 0.105 0.083 -0.176

∼AppResult 6.230*** -1.952*** 6.144*** -0.970*** 6.833*** -2.191**

∼Sensitivity 0.022 -0.034 -0.022 -0.026 0.003 0.056

∼Specificity -0.103 -0.001 0.063 -0.185* -0.192 -0.119
*p < .05, **p < .01, ***p < .001

There were, however, cases when Sensitivity had a statistically significant effect on

ActionChangePositive and PerceivedSusceptibility for the Common and Stigmatizing

condition scenarios. Since statistically significant effects were not found from Sensitivity

to ActionChangePositive or PerceivedSusceptibility, one could surmise that respondents

were willing to accept a positive test result for a Serious condition regardless of the app’s

reported accuracy.

Negative Test Results

Table 7.12 shows the path coefficients for ActionChangeNegative. Across all combinations

of ConditionType and ActionType, there were 982 cases when respondents said that they

would take an action before using the app. Of those 982 cases, 451 (45.9%) changed their

mind after receiving a negative test result. Almost half of those action changes occurred

in the Common condition scenario. As with the model for positive test results, the model
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for negative test results produced a similarly strong fit against the baseline independent

model (CFI = 0.949).

As before, there was a large, positive coefficient between AppResult and

ActionChangeNegative across all scenarios. On the other hand, there were strong negative

coefficients between AppResult and PerceivedSusceptibility across all scenarios. Negative

coefficients were expected since a negative test result should decrease a person’s

perceived likelihood of having a medical condition. This result was statistically

significant across all scenarios, but the magnitude varied. The coefficients from

AppResult to PerceivedSusceptibility for the Common and Stigmatizing condition were

nearly double the corresponding coefficient for the Serious condition, indicating that

respondents used the negative test result from those apps to “rule out” having those

conditions.

Sensitivity did not have a statistically significant effect on either ActionChangeNegative

or PerceivedSusceptibility, which aligns with the reasoning before for Specificity and

positive test results. In the Serious condition scenario, statistically significant negative

coefficients were found from Specificity to ActionChangeNegative and

PerceivedSusceptibility for both of the possible actions. The same could not be said for the

other two medical conditions, indicating that respondents were willing to accept a

negative test result in those cases regardless of that app’s reported accuracy.

7.5.9 Summary of Exploratory Analyses

My exploratory analysis revealed that respondents greatly valued Sensitivity and

Specificity when considering whether they would use a sensor-based health-screening

app. However, my data suggests that the way that people value those quantities

depends on the target medical condition. Respondents valued Sensitivity over Specificity

for the Serious condition, yet Specificity over Sensitivity for the Common and Stigmatizing

conditions.
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When presented with a positive test result, respondents seemed willing to change

their mind in the Serious condition scenario regardless of the app’s reported Sensitivity or

Specificity. Respondents did, however, cared more about Sensitivity when determining

how likely they were to have a Common condition. When presented with a negative test

result, respondents seemed willing to change their mind in the Common and Stigmatizing

condition scenarios regardless of the app’s reported Sensitivity or Specificity, yet

respondents cared more about Specificity when determining how likely they were to

have a Serious condition.

7.6 Discussion

My goal was to develop a survey instrument that researchers can use as they consider

translating their ubiquitous health-screening technology from research into practice to

maximize its potential effectiveness at supporting health-related decision-making. To that

end, I demonstrated that the coefficients from the core HBM constructs to ActionTaken

and the overall model fit were statistically significant. I discuss the findings and design

implications from the specific investigation I ran, and then I delve into survey design

considerations for researchers who may use my instrument.

7.6.1 Design Implications for Sensor-Based Health-Screening Apps

Through my exploration into sensor-based health-screening apps, I uncovered that

respondents were willing to use positive test results to “rule in” a serious medical

condition regardless of whether the test had 65% sensitivity or 95% sensitivity. Similarly,

I found that respondents were willing to use negative test results to “rule out” common

and stigmatizing medical conditions regardless of test specificity. These results show

that sensor-based health-screening apps can have a large and even undue influence on a

person’s course of action, a finding that should be accounted for in the design of such

technologies.
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Researchers often design their data collection mechanisms and classifiers to optimize

overall accuracy, but my results suggest that researchers should consider the trade-off

between sensitivity and specificity for their target medical condition. For example, part

of my survey in Section 7.5 asked respondents to place themselves in a scenario where

they might believe they have skin cancer. It is currently common practice for a physician

to encourage a patient to monitor a mole with an ambiguous appearance to see how it

develops over time. Likewise, a smartphone app that aims to minimize the unnecessary

costs associated with false positives might employ such an approach, asking a person to

test themselves over time to generate greater decision confidence. Because my data

suggests that people do not always properly consider accuracy metrics when deciding

their next course of action, this approach might be preferable to reporting a result as

“abnormal with 65% confidence”. Other health-screening apps may take different

approaches according to the the implications of the trade-off between sensitivity and

sensitivity.

7.6.2 Increasing Model Complexity

SEM is a powerful tool for evaluating causal models. The path diagrams for my analyses

consisted of regressions and one latent variable for PerceivedSeriousness, but SEM can

accommodate many other constraints. My model could have included more latent

variables with the demographic information I collected, such as “statistical

understanding” or “comfort with technology”. SEM also allows researchers to specify

expected intercepts and covariance between variables in order to further constrain the

models. Because my core contribution in this paper is a demonstration of the survey

instrument and not an exhaustive evaluation of the survey, I specified neither in my

analyses. Future work can be done to examine the impact and utility of these

specifications.
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7.6.3 Accuracy Metrics and Prevalence

Not all positive test results indicate that a person has a medical condition, nor do all

negative test results indicate that a person does not have a medical condition. My

evaluation was concerned with situations when a sensor-based health-screening app

might incite a change in action. However, a change in action is not always a good result.

The nuance that is missing from my survey instrument lies in the notion of a prior

probability.

Prior probabilities are influenced by a number of factors, including prevalence (i.e., the

rate at which a medical condition manifests in a population), medical history, and habits.

Sensitivity (SNS) and specificity (SPC) rates are the standard metrics used to describe

the accuracy of a medical test because they exclude the notion of prevalence. Sensitivity

and specificity can be used to compute the diagnostic power of a positive test result, called

its positive likelihood ratio (LR+):

LR+ =
SNS

1− SPC
(7.1)

According to Bayesian reasoning, the prior probability (P0) is required for using

sensitivity and specificity to actually make a diagnosis. When a person receives a

positive test result, that prior probability is updated to a posterior probability (P ) as

follows:

P =
SNS ∗ P0

(1− SPC)(1− P0) + SNS ∗ P0

=
LR+ ∗ P0

1− P0 + LR+ ∗ P0

(7.2)

I excluded the notion of prior probabilities in my survey instrument because it is difficult

to accurately quantify P0 without detailed information about the respondent’s

environment and medical history. Prevalence rates also varied across the different

medical conditions I investigated, which would have complicated the interpretation of

my results. Future deployments of my survey instrument that focus on a single medical

condition could select a fixed prevalence rate and go as far as calculating a posterior

probability for respondents to see how their reactions change.
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In fact, an alternative survey format could emerge from the use of Bayesian

reasoning. Rather than asking respondents to commit to action or inaction, my survey

could have asked respondents to express the likelihood that they would take action as a

probability percentage. Using the percentage before the introduction of the app as P0

and the percentage after as P , the diagnostic power a person attributes to the test can be

calculated by solving Equation 7.2 for LR+. The test’s actual positive likelihood ratio can

be calculated using the sensitivity and specificity rates shown to the respondent.

Comparing the respondent’s perceived positive likelihood ratio versus the test’s actual

positive likelihood ratio can indicate whether the respondent underestimated or

overestimated an app’s diagnostic power. In a way, this approach would have mimicked

prior work in judgment analysis [95, 44] where an optimal decision can be made. I chose

to avoid probabilistic responses because prior research has found that people tend to

apply an inherent weighting function to probability values [113], but finding an effective

format to elicit such information is a future research opportunity.

7.6.4 Exploration of Other Potential Attributes

I explored the influence of the target medical condition and app accuracy on people’s

reactions to sensor-based health-screening apps, but my survey instrument can be easily

adapted to explore a variety of other attributes.

Interface Design

Interface design is a major attribute that warrants exploration. I chose to exclude

screenshots of potential interfaces so that respondents would focus on the overall

scenario rather than specific design decisions like fonts, instructions, or screen layouts.

This decision coincides with Truong et al.’s [241] finding that the exclusion or abstraction

of elements like text can control where a participant’s attention is drawn when

prototyping with storyboards. Nevertheless, a technology’s interface is critical to its
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credibility. Something as small as a typo may make an app seem unprofessional, leading

a potential end-user to distrust the app. Researchers can add screenshots to the

technology descriptions and loop through different interface designs in the survey flow

as I did for target medical conditions in Figure 7.5. Unique features within those

screenshots would be encoded as binary variables within the SEM analysis.

Technology Pricing

One interesting attribute that arose during my pilot testing was app pricing. At first, I

stated that apps cost $0.99 because I worried that a free app would appear illegitimate

and unregulated while an expensive app would diminish interest. When potential

participants were shown descriptions of a $0.99 app, they felt that a less expensive app

was less legitimate than a free one because the $0.99 price was viewed as “cheap”. With

my survey instrument, researchers can simply mention the price when they are

describing their technology. Price would be treated as an ordinal variable during the

SEM analysis.

Endorsement

Another factor that influences the legitimacy of a technology is endorsements. Apps

stores, smartphone manufacturers, special interest groups, and physicians can all

endorse technologies, serving as a “seal of approval” that may imbue end-users with

confidence in a technology. A limitation of my survey instrument is that it is difficult to

convey an endorsement to respondents without explicitly drawing the respondent’s

attention to it. Endorsements can appear in many places—commercials, supplemental

materials, or websites—that may not be as conspicuous as mentioning would be done in

the survey. Determining a more natural way of introducing endorsements could be a

potential avenue for future work.
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Chapter 8

IMPLICATIONS AND CONCLUSIONS

8.1 Summary

In this dissertation, I provided evidence in support the following thesis statement:

Technological and scalability barriers to some medical assessments can be

addressed through smartphone-based sensing tools; moreover, the acceptability of

these tools can be addressed through surveys that reveal how these tools and their

results are likely to be regarded by potential users.

First, I provided three examples of how smartphone sensors can be used to reduce

technological and scalability barriers to medical testing. I posited that this could be

achieved by using smartphone sensors to make medical observations accurate, precise,

repeatable, and pervasive. I supported this supposition with three examples focused on

visual observations of the eye, showing how cameras can be used to outperform human

sight. Although some mobile health technologies for basic biometrics are already seeing

usage by average consumers, technologies like the ones I presented are far from being

accessible to all. This dissertation describes challenges that I believe either hinder mobile

health from reaching complete ubiquity (e.g., smartphone heterogeneity) or serve as a

warning to make sure that mobile health actually improves medical outcomes (e.g.,

proper result interpretation). I describe recent steps that have been taken to address

those challenges and offer up potential areas of future exploration. To address one of

those challenges, I presented a survey instrument that provides a low-cost way for

researchers to examine acceptability barriers. The survey instrument provides a way for

researchers and designers to modify characteristics of their technology and gauge how
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their target audience would react to those changes when deciding if they would take

health-promoting action.

8.2 Implications

I firmly believe that mobile health will continue to grow over the next decade, allowing

people to monitor aspects of their health in the comfort of their homes. Regardless of

whether mobile health continues to be delivered through current mobile devices like

smartphones and smartwatches or emerging devices like augmented reality headsets,

there must be more research effort in this space to ensure that mobile health does more

good than harm. I proposed some potential research directions in Chapter 6. Here,

however, I discuss the broader implications of my work outside of the HCI and

UbiComp communities.

8.2.1 Medicine and Physiology

Work in the mobile health space can accelerate discoveries in medicine and physiology

by enabling clinical researchers to rapidly scale up deployment and reach populations

that were previously unreachable. Although clinicians called PupilScreen with the box

“inconvenient”, they were far more willing to conduct clinical studies on TBI with a

smartphone than with a pupillometer. This fact was shocking to me considering that

clinicians already have access to pupillometers and pupillometers are have been

supported by more evidence than PupilScreen. This shows that the convenience of a

smartphone cannot be taken for granted. The clinicians we spoke to were very excited

about using their own smartphones that they carry in their pockets to conduct a test

rather than searching for a separated device on their floor. Beyond convenience,

clinicians preferred smartphones for their familiar user interface (i.e., a touchscreen on

display) rather than the extra buttons and switches that are included on a pupillometer.

Nevertheless, I believe that there must be a clear understanding between technical
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and clinical researchers about the algorithmic development process, particularly when

the algorithms involve data-driven models. Machine learning requires lots of data before

results can be trusted, yet some people are only willing to participate in research if they

can receive results in real-time. Striking a balance in this regard is a critical issue that

must be addressed in a case-by-case manner.

8.2.2 User Experience and Design

I believe that user experience researchers and designers are going to be critical to the

adoption of mobile health apps. As I describe in Section 6.3, smartphone-based

health-screening apps often require proper compliance by users to ensure that the results

they receive are relevant to their health and not their environment or abilities. Clever

user experiences can be engineered to encourage proper data collection, whether those

experiences involve guiding users through proper sensor placement or checking users’

environments. I also foresee an opportunity for user experience researchers to create

apps for the sole purpose of collecting high-quality sensor datasets. For instance, a

smartphone app that guides users through taking clear and consistently positioned

pictures of their face could power a number of applications that examine the progression

of facial features.

As I describe in Section 6.4, well-designed user interfaces are also critical for ensuring

that people properly interpret their test results. Interfaces should highlight the

information most important to users without overwhelming them with unnecessary

details; however, interfaces should also include enough information to instill the system

with legitimacy. The survey instrument I presented in Chapter 7 provides a way for

researchers to quickly explore that balance without requiring a functioning prototype.

Eventually, I hope enough researchers examine this problem so that we someday reach

more generalizable guidelines as the data visualization community has done for

presenting visual information to non-experts.
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8.2.3 Computer Architecture

When prototyping smartphone-based health-screening apps, I usually start by running

code offline with all of the computational power available to me to explore complex

machine learning models and to push accuracy as high as possible. The most immediate

path to a full-blown deployment would involve setting up a centralized server that

houses those models and accepts HTTP requests. However, such a system requires

wireless connectivity, which is not always guaranteed in the developing world.

Wirelessly transmitting data also introduces vectors for invading users’ privacy, which is

particularly important given the sensitive nature of health-related data. Recent efforts

have been made to support deep learning on edge devices; it is my hope that these

efforts continue so that mobile health can remain at the edge.

8.3 Reflection

To conclude my dissertation, I would like to take the opportunity to make two final points

based on my experience in developing smartphone-based health-screening apps.

First, I would like to bring up a philosophical question about whether researchers

should actually be striving towards at-home health screening through a smartphone

altogether. I have had friendly arguments with other researchers who believe that we

should instead be focusing on custom hardware. They go on to say that by restricting

ourselves to the sensors that are available on smartphones, we are ignoring decades of

research that has been dedicated to developing sensors that make our research problems

much easier. A prime example of this tension is PupilScreen. I focused on segmenting

the pupil using smartphone cameras, which detect visible wavelength; however,

accurate gaze tracking and pupil measurement devices have already been

commercialized using infrared cameras since those cameras emphasize the pupil

regardless of iris color.

One issue I find with using custom hardware is that it limits the potential scalability
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of a solution. Even if the novel hardware proves to be extremely useful, its uptake will

be impeded by the rate at which people purchase the new device, assuming they can

afford it in the first place. Smartphones are now beginning to include infrared cameras

for augmented reality applications, only people who can afford those phones would

benefit from a tool like PupilScreen. Mobile health is meant to reduce barriers to

healthcare access, not make them worse. I believe that targeting existing smartphones

early in the design process allows for more scalable prototypes that can uncover

potential issues sooner with a ubiquitous device. Had we not used a smartphone to

prototype PupilScreen, for example, we would never considered how important ambient

lighting or camera resolution would be for measuring the PLR without a controlled

testing environment. Although today’s smartphones may not be always be suitable for

the solutions developed in research labs, tomorrow’s ubiquitous devices can be better

informed by such investigations.

The second point I want involves how results from mobile health research are

communicated to non-academic researchers. I have had discussions with clinicians who

overestimate the power of machine learning and computer vision, claiming that

algorithms should always able to pick on “invisible” signals. I have had conversations

with media coordinators who have wanted to stretch the truth about what a project is

capable of, talking about what the technology may be able to do in the future rather than

what it is currently able to do. I have had people send me their medical health record

after seeing those press releases, begging that they can use my projects to validate their

concerns. Unfortunately, news outlets are incentivized to write catch headlines that grab

readers’ attention, even if that means stretching the truth. As researchers, we tend to be

complicit with this because more coverage means that we are demonstrating broader

impact with our research.

I believe that the blame does not rest on a particular group of people. Instead, I

believe that we should all reflect on how research is communicated to broader

audiences, especially when that research has the potential for real-world impact. There
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are many benefits to teaching people about what is possible with technology, such as

getting children excited about engineering and preparing people for what may become

more mainstream in the future. However, we need to strike a balance between making

content accessible and staying true what has actually been achieved.

To avoid ending on a pessimistic note, I want to re-iterate the strong potential I see in

the mobile health space. There is a clear demand for at-home health screening tools.

Talking with clinicians, industry leaders, and policymakers has confirmed my

excitement in the potential that mobile health has towards changing people’s lives and

improving health outcomes. We are on the verge of finding ways to support

telemedicine and community healthcare workers in ways that may have seemed

impossible 50 years ago. It is my hope that researchers continue to join the mobile health

movement so that, one day, medical screening will be just a download away.
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Appendix A

SURVEY INSTRUMENT FOR ASSESSING PERCEPTION OF
HEALTH-SCREENING TECHNOLOGIES
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Note: This survey instrument can be used to explore ubiquitous health sensing technologies intended 
for a variety of medical conditions. To illustrate how the survey instrument is meant to be used, 
however, this instantiation uses skin cancer as the medical condition of interest. Other details that are 
meant to be completed by the researcher are indicated with double brackets (e.g., [[text]]). 

Consent 
[[CONSENT DETAILS AS REQUIRED BY INSTITUTION]] 
 
By clicking next, you agree: 
• That you are at least 18 years of age, 
• That you are participating in this study, 
• That you understand you can withdraw from the survey at any time, and 
• That you should refrain from providing identifiable data in open-ended questions.  
 
Required questions will be marked with an asterisk (*) sign. 
 
To begin the survey, please click the “Next” button. 
 

Exclusionary Criteria 
1. What platform does your primary smartphone run on? 
 

 

 

 

 

 

 
 
2. How would you rate your expertise with using a smartphone (e.g., using various apps, changing 
settings, etc.)? 
 

 

 

 
 

iOS (iPhone)

Android

Windows

Blackberry

Other

I do not own a smartphone

Novice / Beginner

Intermediate

Expert / Advanced
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Survey Introduction 
[[PURPOSE OF THE STUDY]] 
 
Disclaimer: Any information you see in this survey (e.g., accuracy numbers, costs, diagnostic tests) 
should not be taken as medical advice as this information may not match the standard for any current 
or future procedures. Furthermore, this survey involves hypothetical scenarios with diagnostic aid 
smartphone apps that may not currently exist. For any medical concerns, consult your physician or 
doctor. 
 
To confirm that you have read and understood the disclaimer above, please click the box below: 

 
 

Medical Condition Familiarity 
3. How familiar, if at all, are you with skin cancer? 
 
Not familiar at all: only heard the name, if at all 
Familiar: familiar with some of the causes, symptoms, or treatments 
Extremely familiar: familiar with all of the causes, symptoms, or treatments 

 
Not familiar 

at all 
Slightly 
familiar 

Somewhat 
familiar 

Familiar Moderately 
familiar 

Very familiar Extremely 
familiar 

       
 
4. To the best of your knowledge, have you, a family member, or a close acquaintance had skin 
cancer in the past 3 years? 
 

Yes, I have or 
have had it in the 

past 3 years 

Yes, a family 
member or close 
acquaintance has 

or has had it in 
the past 3 years 

Yes, I and other 
family members 

or close 
acquaintances 

have or have had 
it in the past 3 

years 

No, neither me 
nor nobody I am 
close to has or 

has had it in the 
past 3 years 

I am not 
sure 

Prefer not 
to answer 

      

I have read and understood that the medical information presented in this survey 
should not be taken as advice.
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Baseline HBM Measurements 
Skin cancer is the most common form of cancer in the United States. Overexposure to ultraviolet (UV) 
light from the sun is the major cause of skin cancer. More information about the condition can be 
found at: https://www.cdc.gov/cancer/skin/basic_info/what-is-skin-cancer.htm. 
 
5. If you had skin cancer, how much effect, if at all any, do you think it would have on your long-term 
health? 
 

No effect at 
all 

Very little 
effect 

Little effect Moderate 
effect 

Large effect Very large 
effect 

Extreme 
effect 

       
 
6. If you had skin cancer, how much effect, if at all any, do you think it would have on your finances? 
 

No effect at 
all 

Very little 
effect 

Little effect Moderate 
effect 

Large effect Very large 
effect 

Extreme 
effect 

       
 
7. If you had skin cancer, how much effect, if at all any, do you think it would have on you socially 
and/or professionally? 
 

No effect at 
all 

Very little 
effect 

Little effect Moderate 
effect 

Large effect Very large 
effect 

Extreme 
effect 

       
 
8. How beneficial, if at all, do you think each of these actions would be towards improving your skin 
cancer? 
 
 Not at all Slightly 

beneficial 
Somewhat 
beneficial 

Beneficial Moderately 
beneficial 

Very 
beneficial 

Extremely 
beneficial 

Schedule an 
appointment 
with a doctor 
/ physician 
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Contact a 
doctor's / 
physician's 
office for 
advice 

       

 
9. How easy or difficult do you think it would be for you to take each of the following actions? 
 
 Very difficult Somewhat 

difficult 
Slightly 
difficult 

Neither 
difficult 
nor easy 

Slightly 
easy 

Somewhat 
easy 

Very 
easy 

Schedule an 
appointment 
with a doctor 
/ physician 

       

Contact a 
doctor's / 
physician's 
office for 
advice 

       

 

Scenario Description 
Imagine yourself in the following scenario and answer the following questions accordingly. 
 
You recently noticed a new mole (beauty mark) on your arm that is oddly colored and misshapen. After 
looking up information online, you worry that you might be developing skin cancer. 
 
10. Please check all of the symptoms that were mentioned in the scenario you just read: 

 

 

 

 
 
11. How likely or unlikely do you think you are to have skin cancer in this scenario? 
 

Oddly colored mole

Knee swelling

Stiff neck

Frequent urination
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Very 
unlikely 

Somewhat 
unlikely 

Slightly 
unlikely 

Neither 
unlikely nor 

likely 

Slightly 
likely 

Somewhat 
likely 

Very likely 

       
 
12. Given the possibility that you might have skin cancer, which of the following actions would you 
plan to take on the same day as when you discovered your symptoms? 
 
 No / Probably No Yes / Probably Yes 

Schedule an appointment with a 
doctor/physician   

Contact a doctor's/physician's 
office for advice   

 

App Description 
A smartphone app named SkinCheck analyzes a picture of a mole to determine whether or not it is 
cancerous. To use the app, you are asked to take a picture of the mole so that it is clearly visible. The 
app guides you through taking a picture so that it can see the mole clearly and at a proper distance. 
 
SkinCheck comes with your smartphone by default as part of a new mobile health initiative by 
[[RESPONDENT’S PHONE COMPANY]]. SkinCheck provides text-based and audio-based instructions 
to help you perform the test. The app also checks that the test was performed correctly. You can 
repeat the test until the app determines the image to be "valid". The results of the test are available 
instantly. 
 
13. How likely or unlikely would you be to use SkinCheck to check your symptoms from the scenario? 
 

Very 
unlikely 

Somewhat 
unlikely 

Slightly 
unlikely 

Neither 
unlikely nor 

likely 

Slightly 
likely 

Somewhat 
likely 

Very likely 

       
 

“Positive” Test Result 
Note: This screen is only shown if the user’s answer to Question 13 was one of the following: “Neither 
unlikely nor likely”, “Slightly likely”, “Somewhat likely”, or “Very likely”. 
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Imagine that you used SkinCheck and it said that the mark on your arm was normal. The app 
emphasizes that although it cannot guarantee that you do not have skin cancer, the test result suggests 
that the mark on your arm is inconsistent with those of people with skin cancer. With this test result in 
mind, please answer the same questions we asked you before. 
 
14. How likely or unlikely do you think you are to have skin cancer in this scenario? 
 

Very 
unlikely 

Somewhat 
unlikely 

Slightly 
unlikely 

Neither 
unlikely nor 

likely 

Slightly 
likely 

Somewhat 
likely 

Very likely 

       
 
15. Given the possibility that you might have skin cancer, which of the following actions would you 
plan to take on the same day as when you discovered your symptoms? 
 
 No / Probably No Yes / Probably Yes 

Schedule an appointment with a 
doctor/physician   

Contact a doctor's/physician's 
office for advice   

 

“Negative” Test Result 
Note: This screen is only shown if the user’s answer to Question 13 was one of the following: “Neither 
unlikely nor likely”, “Slightly likely”, “Somewhat likely”, or “Very likely”. 
 
Imagine that you used SkinCheck and it said that the mark on your arm was abnormal. The app 
emphasizes that although it cannot guarantee that you have pink eye, the test result suggests that you 
may want to seek medical care. With this test result in mind, please answer the same questions we 
asked you before. 
 
16. How likely or unlikely do you think you are to have skin cancer in this scenario? 
 

Very 
unlikely 

Somewhat 
unlikely 

Slightly 
unlikely 

Neither 
unlikely nor 

likely 

Slightly 
likely 

Somewhat 
likely 

Very likely 
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17. Given the possibility that you might have skin cancer, which of the following actions would you 
plan to take on the same day as when you discovered your symptoms? 
 
 No / Probably No Yes / Probably Yes 

Schedule an appointment with a 
doctor/physician   

Contact a doctor's/physician's 
office for advice   

 

Post-Survey Questionnaire Part 1 
We have a few more questions before the survey is complete. Please answer the following questions 
so we can understand the factors that may have influenced your decisions. 
 
18. In your opinion how would you rate clinical tests and diagnostic aid apps on the following 
factors? 
 

 Very 
much 

so 

  No 
difference 

  Very 
much 

so 

 

I believe 
clinical tests 
are faster for 
getting 
results 

       

I believe 
diagnostic 
aid apps 
are faster 
for getting 
results 

I believe 
clinical tests 
are less 
expensive 

       

I believe 
diagnostic 
aid apps 
are less 
expensive 

I believe 
clinical tests 
keep records 
more private 

       

I believe 
diagnostic 
aid apps 
keep 
records 
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more 
private 

 
19. Can you think of any other information which might have changed the way you made your 
decisions in the previous scenarios? 
 

 
 
20. How many courses have you taken involving statistics (pick the highest level)? 
 

 

 

 

 

 
 
21. How often do you use statistics in your daily life? 
 

 

 

 

 

 
 
22. Out of 1,000 people in a small town, 500 are members of a choir. Out of these 500 members in 
the choir, 100 are men. Out of the 500 inhabitants that are not in the choir, 300 are men. What is the 
probability that a randomly drawn man is a member of the choir?  
 
Please indicate the probability as a percentage without the percent sign (0-100). 
 

 
 

Post-Survey Questionnaire Part 2 
Please answer the following demographic questions about yourself to the best of your abilities. Your 
answers will not be connected to any names, emails, or other personally-identifiable information. 
 

No courses

A high school course

Multiple high school courses

A single college / university course

Multiple college / university courses

Never

Rarely

Sometimes

Often

All of the time
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23. What gender do you identify as? 
 

 

 

 

 

 

 

 
 
24. What is your age? 
 

 

 

 

 

 

 

 
 
25. What race and/or ethnicity do you identify as? 
 

 

 

 

 

 

 

 

Male

Female

Transgender male

Transgender female

Gender variant / non-conforming

Self-identify

Prefer not to answer

18-24

25-34

35-44

45-54

55-64

65+

Prefer not to answer

White (e.g., German, Irish, English, Italian, Polish, French, etc.)

Hispanic, Latino, or Spanish origin (e.g., Mexican or Mexican America, Puerto Rican, 
Cuban, Salvadoran, Dominican, Columbian, etc.)

Black or African American (e.g., African America, Jamaican, Haitian, Nigerian, 
Ethiopian, Somalian, etc.)

Asian (e.g., Chinese, Filipino, Asian Indian, Vietnamese, Korean, Japanese, etc.)

American Indian or Alaska Native (e.g., Navajo Nation, Blackfeet Tribe, Mayan, 
Aztec, Nome Eskimo Community, etc.)

Middle Eastern or North African (e.g., Lebanese, Iranian, Egyptian, Syrian, 
Moroccan, Algerian, etc.)

Native Hawaiian or Other Pacific Islander (e.g., Native Hawaiian, Samoan, 
Chamorro, Tongan, Fijian, Marshallese, etc.)
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26. What is your current marital status? 
 

 

 

 

 

 

 
 
27. Do you have any children? 
 

 

 

 
 
28. In which country do you reside? 
 

 
 
29. What is your highest level of education completed? 
 

 

 

 

 

 

 

 

 
 
30. What is your current estimated annual household income? 
 

 

Some other race, ethnicity, or origin 

Prefer not to answer

Married / domestic partner

Widowed

Divorced

Separated

Single / never married

Prefer not to answer

Yes

No

Prefer not to answer

Less than high school

Graduated high school

Trade/technical school

Some college, no degree

Associate degree

Bachelor's degree

Advanced degree (Masterís, PhD, MD)

Prefer not to answer

Less than $25,000
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$25,000-$34,999

$35,000-$49,999

$50,000-$74,999

$75,000-$99,999

$100,000-$124,999

$125,000-$149,999

$150,000 or more

Prefer not to answer
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