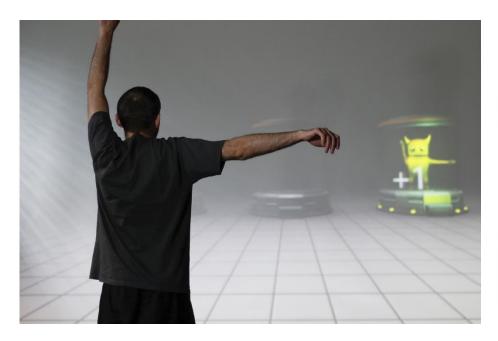
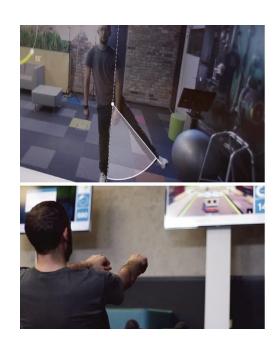
Body Motion

Alex Mariakakis

University of Toronto

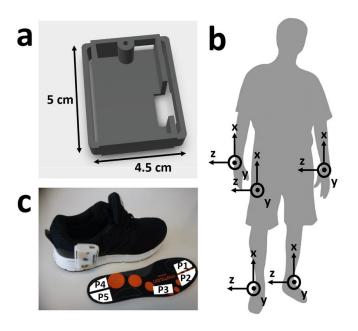

Department of Computer Science


Why Study Human Body Motion?

Domain	Purpose
Physical Injury Rehabilitation	Ensure that the correct muscles are being targeted during therapy
Sports Performance	Identify areas for improvement, technique optimization, and injury risk reduction
Aging	Track deterioration of range-of-motion, balance, and overall coordination
Neurological Disorders	Detect external indicators of abnormalities in the nervous system

Cameras


Pros


+ Body- and hand-pose tracking are wellstudied in computer vision

Cons

- Compromises privacy in public and passive settings
- Dependent on field of view

Inertial Measurement Units (IMUs)

Includes multiple signals:

- Accelerometer (linear motion)
- Gyroscope (rotational motion)
- Magnetometer (orientation), sometimes

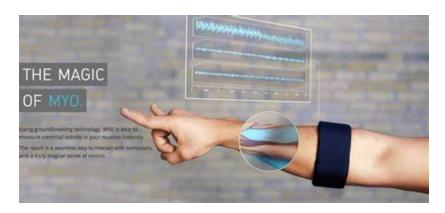
Pros

- Does not contain protected health information
- + Completely portable

Cons

 Accuracy depends on sensor placement (e.g., step counting from pocket versus watch)

Pressure-Sensitive Mats


Pros

- Specifically designed for gait analysis
- Simplifies measurements like stride length and gait speed

Cons

- Only designed for gait analysis
- Fixed location
- Expensive

Other Sensors

Electromyography

(electrical activity in muscles)

Goniometers / Strain gauges (flexion of joints)

Motion Capture System (precise marker tracking)

Resources

Gait Analysis: An Introduction (Whittle '91)